team-10/env/Lib/site-packages/transformers/models/colqwen2/processing_colqwen2.py
2025-08-02 07:34:44 +02:00

408 lines
19 KiB
Python

# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/colqwen2/modular_colqwen2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_colqwen2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput, is_valid_image
from ...processing_utils import MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import is_torch_available
if is_torch_available():
import torch
class ColQwen2ProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": "longest",
},
"images_kwargs": {
"data_format": "channels_first",
"do_convert_rgb": True,
},
"common_kwargs": {"return_tensors": "pt"},
}
class ColQwen2Processor(ProcessorMixin):
r"""
Constructs a ColQwen2 processor which wraps a Qwen2VLProcessor and special methods to process images and queries, as
well as to compute the late-interaction retrieval score.
[`ColQwen2Processor`] offers all the functionalities of [`Qwen2VLProcessor`]. See the [`~Qwen2VLProcessor.__call__`]
for more information.
Args:
image_processor ([`Qwen2VLImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`Qwen2TokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
visual_prompt_prefix (`str`, *optional*): A string that gets tokenized and prepended to the image tokens.
query_prefix (`str`, *optional*): A prefix to be used for the query.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
def __init__(
self,
image_processor=None,
tokenizer=None,
chat_template=None,
visual_prompt_prefix: Optional[str] = None,
query_prefix: Optional[str] = None,
**kwargs,
):
super().__init__(image_processor, tokenizer, chat_template=chat_template)
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
if visual_prompt_prefix is None:
visual_prompt_prefix = "<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|><|endoftext|>"
self.visual_prompt_prefix = visual_prompt_prefix
if query_prefix is None:
query_prefix = "Query: "
self.query_prefix = query_prefix
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[ColQwen2ProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model either (1) one or several texts, either (2) one or several image(s). This method is a custom
wrapper around the Qwen2VLProcessor's [`~Qwen2VLProcessor.__call__`] method adapted for the ColQwen2 model. It cannot process
both text and images at the same time.
When preparing the the text(s), this method forwards the `text` and `kwargs` arguments to Qwen2TokenizerFast's
[`~Qwen2TokenizerFast.__call__`].
When preparing the the image(s), this method forwards the `images` and `kwargs` arguments to Qwen2VLImageProcessor's
[`~Qwen2VLImageProcessor.__call__`].
Please refer to the doctsring of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
text (`str`, `list[str]`, `list[list[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
ColQwen2ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
suffix = output_kwargs["text_kwargs"].pop("suffix", None)
return_token_type_ids = True if suffix is not None else False
if text is None and images is None:
raise ValueError("Either text or images must be provided")
if text is not None and images is not None:
raise ValueError("Only one of text or images can be processed at a time")
if images is not None:
if is_valid_image(images):
images = [images]
elif isinstance(images, list) and is_valid_image(images[0]):
pass
elif not (isinstance(images, list) and isinstance(images[0], list) and is_valid_image(images[0][0])):
raise ValueError("images must be an image, list of images or list of list of images")
texts_doc = [self.visual_prompt_prefix] * len(images)
image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
image_grid_thw = image_inputs["image_grid_thw"]
if image_grid_thw is not None:
merge_length = self.image_processor.merge_size**2
index = 0
for i in range(len(texts_doc)):
while self.image_token in texts_doc[i]:
texts_doc[i] = texts_doc[i].replace(
self.image_token, "<|placeholder|>" * (image_grid_thw[index].prod() // merge_length), 1
)
index += 1
texts_doc[i] = texts_doc[i].replace("<|placeholder|>", self.image_token)
text_inputs = self.tokenizer(
texts_doc,
return_token_type_ids=False,
**output_kwargs["text_kwargs"],
)
return_data = BatchFeature(data={**text_inputs, **image_inputs})
# NOTE: The following adjustment ensures correct behavior with DDP on multiple GPUs.
offsets = return_data["image_grid_thw"][:, 1] * return_data["image_grid_thw"][:, 2] # (batch_size,)
# Split the pixel_values tensor into a list of tensors, one per image
pixel_values = list(
torch.split(return_data["pixel_values"], offsets.tolist())
) # [(num_patches_image_0, pixel_values), ..., (num_patches_image_n, pixel_values)]
# Pad the list of pixel_value tensors to the same length along the sequence dimension
return_data["pixel_values"] = torch.nn.utils.rnn.pad_sequence(
pixel_values, batch_first=True
) # (batch_size, max_num_patches, pixel_values)
if return_token_type_ids:
labels = return_data["input_ids"].masked_fill(return_data["token_type_ids"] == 0, -100)
return_data.update({"labels": labels})
return return_data
elif text is not None:
if isinstance(text, str):
text = [text]
elif not (isinstance(text, list) and isinstance(text[0], str)):
raise ValueError("Text must be a string or a list of strings")
if suffix is None:
suffix = self.query_augmentation_token * 10
texts_query: list[str] = []
for query in text:
augmented_query = self.query_prefix + query + suffix
texts_query.append(augmented_query)
batch_query = self.tokenizer(
texts_query,
return_token_type_ids=False,
**output_kwargs["text_kwargs"],
)
return batch_query
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
"""
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
Args:
image_sizes (list[list[str]], *optional*):
The input sizes formatted as (height, width) per each image.
Returns:
dict[str, list[int]]: A dictionary mapping each modality ("image", "video", "audio")
to a list containing the number of placeholder tokens required. If the model doesn't accept
a certain modality or no input sizes are provided, the dict value is set to an empty list.
"""
vision_data = {}
if image_sizes is not None:
num_image_tokens = [self.image_seq_length] * len(image_sizes)
num_image_patches = [1] * len(image_sizes)
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
return MultiModalData(**vision_data)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
@property
def query_augmentation_token(self) -> str:
"""
Return the query augmentation token.
Query augmentation buffers are used as reasoning buffers during inference.
"""
return self.tokenizer.pad_token
def process_images(
self,
images: ImageInput = None,
**kwargs: Unpack[ColQwen2ProcessorKwargs],
) -> BatchFeature:
"""
Prepare for the model one or several image(s). This method is a wrapper around the `__call__` method of the ColQwen2Processor's
[`ColQwen2Processor.__call__`].
This method forwards the `images` and `kwargs` arguments to the image processor.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
return self.__call__(images=images, **kwargs)
def process_queries(
self,
text: Union[TextInput, list[TextInput]],
**kwargs: Unpack[ColQwen2ProcessorKwargs],
) -> BatchFeature:
"""
Prepare for the model one or several texts. This method is a wrapper around the `__call__` method of the ColQwen2Processor's
[`ColQwen2Processor.__call__`].
This method forwards the `text` and `kwargs` arguments to the tokenizer.
Args:
text (`str`, `list[str]`, `list[list[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
"""
return self.__call__(text=text, **kwargs)
def score_retrieval(
self,
query_embeddings: Union["torch.Tensor", list["torch.Tensor"]],
passage_embeddings: Union["torch.Tensor", list["torch.Tensor"]],
batch_size: int = 128,
output_dtype: Optional["torch.dtype"] = None,
output_device: Union["torch.device", str] = "cpu",
) -> "torch.Tensor":
"""
Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector
query embeddings (`qs`) and passage embeddings (`ps`). For ColQwen2, a passage is the
image of a document page.
Because the embedding tensors are multi-vector and can thus have different shapes, they
should be fed as:
(1) a list of tensors, where the i-th tensor is of shape (sequence_length_i, embedding_dim)
(2) a single tensor of shape (n_passages, max_sequence_length, embedding_dim) -> usually
obtained by padding the list of tensors.
Args:
query_embeddings (`Union[torch.Tensor, list[torch.Tensor]`): Query embeddings.
passage_embeddings (`Union[torch.Tensor, list[torch.Tensor]`): Passage embeddings.
batch_size (`int`, *optional*, defaults to 128): Batch size for computing scores.
output_dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): The dtype of the output tensor.
If `None`, the dtype of the input embeddings is used.
output_device (`torch.device` or `str`, *optional*, defaults to "cpu"): The device of the output tensor.
Returns:
`torch.Tensor`: A tensor of shape `(n_queries, n_passages)` containing the scores. The score
tensor is saved on the "cpu" device.
"""
if len(query_embeddings) == 0:
raise ValueError("No queries provided")
if len(passage_embeddings) == 0:
raise ValueError("No passages provided")
if query_embeddings[0].device != passage_embeddings[0].device:
raise ValueError("Queries and passages must be on the same device")
if query_embeddings[0].dtype != passage_embeddings[0].dtype:
raise ValueError("Queries and passages must have the same dtype")
if output_dtype is None:
output_dtype = query_embeddings[0].dtype
scores: list[torch.Tensor] = []
for i in range(0, len(query_embeddings), batch_size):
batch_scores: list[torch.Tensor] = []
batch_queries = torch.nn.utils.rnn.pad_sequence(
query_embeddings[i : i + batch_size], batch_first=True, padding_value=0
)
for j in range(0, len(passage_embeddings), batch_size):
batch_passages = torch.nn.utils.rnn.pad_sequence(
passage_embeddings[j : j + batch_size], batch_first=True, padding_value=0
)
batch_scores.append(
torch.einsum("bnd,csd->bcns", batch_queries, batch_passages).max(dim=3)[0].sum(dim=2)
)
scores.append(torch.cat(batch_scores, dim=1).to(output_dtype).to(output_device))
return torch.cat(scores, dim=0)
__all__ = ["ColQwen2Processor"]