121 lines
5.3 KiB
Python
121 lines
5.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""I-JEPA model configuration"""
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
|
|
|
|
class IJepaConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`IJepaModel`]. It is used to instantiate an IJEPA
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the I-JEPA
|
|
[facebook/ijepa_vith14_1k](https://huggingface.co/facebook/ijepa_vith14_1k) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
hidden_size (`int`, *optional*, defaults to 768):
|
|
Dimensionality of the encoder layers and the pooler layer.
|
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
|
The epsilon used by the layer normalization layers.
|
|
image_size (`int`, *optional*, defaults to 224):
|
|
The size (resolution) of each image.
|
|
patch_size (`int`, *optional*, defaults to 16):
|
|
The size (resolution) of each patch.
|
|
num_channels (`int`, *optional*, defaults to 3):
|
|
The number of input channels.
|
|
qkv_bias (`bool`, *optional*, defaults to `True`):
|
|
Whether to add a bias to the queries, keys and values.
|
|
pooler_output_size (`int`, *optional*):
|
|
Dimensionality of the pooler layer. If None, defaults to `hidden_size`.
|
|
pooler_act (`str`, *optional*, defaults to `"tanh"`):
|
|
The activation function to be used by the pooler. Keys of ACT2FN are supported for Flax and
|
|
Pytorch, and elements of https://www.tensorflow.org/api_docs/python/tf/keras/activations are
|
|
supported for Tensorflow.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import IJepaConfig, IJepaModel
|
|
|
|
>>> # Initializing a IJEPA ijepa-base-patch16-224 style configuration
|
|
>>> configuration = IJepaConfig()
|
|
|
|
>>> # Initializing a model (with random weights) from the ijepa-base-patch16-224 style configuration
|
|
>>> model = IJepaModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "ijepa"
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size=768,
|
|
num_hidden_layers=12,
|
|
num_attention_heads=12,
|
|
intermediate_size=3072,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.0,
|
|
attention_probs_dropout_prob=0.0,
|
|
initializer_range=0.02,
|
|
layer_norm_eps=1e-12,
|
|
image_size=224,
|
|
patch_size=16,
|
|
num_channels=3,
|
|
qkv_bias=True,
|
|
pooler_output_size=None,
|
|
pooler_act="tanh",
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.initializer_range = initializer_range
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.qkv_bias = qkv_bias
|
|
self.pooler_output_size = pooler_output_size if pooler_output_size else hidden_size
|
|
self.pooler_act = pooler_act
|
|
|
|
|
|
__all__ = ["IJepaConfig"]
|