111 lines
3.2 KiB
Python
111 lines
3.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The rednote-hilab team and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from ...modeling_outputs import CausalLMOutputWithPast
|
|
from ...processing_utils import Unpack
|
|
from ...utils import logging
|
|
from ..deepseek_v3.modeling_deepseek_v3 import (
|
|
DeepseekV3DecoderLayer,
|
|
DeepseekV3MLP,
|
|
DeepseekV3MoE,
|
|
DeepseekV3PreTrainedModel,
|
|
DeepseekV3TopkRouter,
|
|
)
|
|
from ..qwen3.modeling_qwen3 import (
|
|
Qwen3Attention,
|
|
Qwen3ForCausalLM,
|
|
Qwen3Model,
|
|
Qwen3RMSNorm,
|
|
Qwen3RotaryEmbedding,
|
|
TransformersKwargs,
|
|
)
|
|
from .configuration_dots1 import Dots1Config
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class Dots1RMSNorm(Qwen3RMSNorm):
|
|
pass
|
|
|
|
|
|
class Dots1RotaryEmbedding(Qwen3RotaryEmbedding):
|
|
pass
|
|
|
|
|
|
class Dots1Attention(Qwen3Attention):
|
|
pass
|
|
|
|
|
|
class Dots1MLP(DeepseekV3MLP):
|
|
pass
|
|
|
|
|
|
class Dots1MoE(DeepseekV3MoE):
|
|
pass
|
|
|
|
|
|
class Dots1TopkRouter(DeepseekV3TopkRouter):
|
|
pass
|
|
|
|
|
|
class Dots1DecoderLayer(DeepseekV3DecoderLayer):
|
|
def __init__(self, config: Dots1Config, layer_idx: int):
|
|
super().__init__()
|
|
self.attention_type = config.layer_types[layer_idx]
|
|
|
|
|
|
class Dots1PreTrainedModel(DeepseekV3PreTrainedModel):
|
|
pass
|
|
|
|
|
|
class Dots1Model(Qwen3Model):
|
|
pass
|
|
|
|
|
|
class Dots1ForCausalLM(Qwen3ForCausalLM):
|
|
def forward(
|
|
self,
|
|
**super_kwargs: Unpack[TransformersKwargs],
|
|
) -> CausalLMOutputWithPast:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, Dots1ForCausalLM
|
|
|
|
>>> model = Dots1ForCausalLM.from_pretrained("rednote-hilab/dots1.llm1.inst")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("rednote-hilab/dots1.llm1.inst")
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
return super().forward(**super_kwargs)
|
|
|
|
|
|
__all__ = [
|
|
"Dots1PreTrainedModel",
|
|
"Dots1Model",
|
|
"Dots1ForCausalLM",
|
|
]
|