152 lines
7.4 KiB
Python
152 lines
7.4 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The GLM & ZhipuAI team and HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
|
|
|
|
class GlmConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`GlmModel`]. It is used to instantiate an Glm
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the Glm-4-9b-chat.
|
|
e.g. [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat)
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 151552):
|
|
Vocabulary size of the Glm model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`GlmModel`]
|
|
hidden_size (`int`, *optional*, defaults to 4096):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 13696):
|
|
Dimension of the MLP representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 40):
|
|
Number of hidden layers in the Transformer decoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
|
Number of attention heads for each attention layer in the Transformer decoder.
|
|
num_key_value_heads (`int`, *optional*, defaults to 2):
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
|
by meanpooling all the original heads within that group. For more details, check out [this
|
|
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
|
|
`num_attention_heads`.
|
|
partial_rotary_factor (`float`, *optional*, defaults to 0.5): The factor of the partial rotary position.
|
|
head_dim (`int`, *optional*, defaults to 128):
|
|
The attention head dimension.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
|
The legacy activation function. It is overwritten by the `hidden_activation`.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
max_position_embeddings (`int`, *optional*, defaults to 131072):
|
|
The maximum sequence length that this model might ever be used with.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1.5625e-07):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
Whether to tie weight embeddings
|
|
rope_theta (`float`, *optional*, defaults to 10000.0):
|
|
The base period of the RoPE embeddings.
|
|
pad_token_id (`int`, *optional*, defaults to 151329):
|
|
Padding token id.
|
|
eos_token_id (`int` | `list`, *optional*, defaults to `[151329, 151336, 151338]`):
|
|
End of stream token id.
|
|
bos_token_id (`int`, *optional*):
|
|
Beginning of stream token id.
|
|
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `True`):
|
|
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
|
```python
|
|
>>> from transformers import GlmModel, GlmConfig
|
|
>>> # Initializing a Glm glm-4-9b-chat style configuration
|
|
>>> configuration = GlmConfig()
|
|
>>> # Initializing a model from the glm-4-9b-chat style configuration
|
|
>>> model = GlmModel(configuration)
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "glm"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
base_model_tp_plan = {
|
|
"layers.*.self_attn.q_proj": "colwise",
|
|
"layers.*.self_attn.k_proj": "colwise",
|
|
"layers.*.self_attn.v_proj": "colwise",
|
|
"layers.*.self_attn.o_proj": "rowwise",
|
|
"layers.*.mlp.gate_up_proj": "colwise_rep", # we need to replicate here due to the `chunk` operation
|
|
"layers.*.mlp.down_proj": "rowwise_rep", # we need to replicate here due to the `chunk` operation
|
|
}
|
|
base_model_pp_plan = {
|
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
|
"norm": (["hidden_states"], ["hidden_states"]),
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=151552,
|
|
hidden_size=4096,
|
|
intermediate_size=13696,
|
|
num_hidden_layers=40,
|
|
num_attention_heads=32,
|
|
num_key_value_heads=2,
|
|
partial_rotary_factor=0.5,
|
|
head_dim=128,
|
|
hidden_act="silu",
|
|
attention_dropout=0.0,
|
|
max_position_embeddings=131072,
|
|
initializer_range=0.02,
|
|
rms_norm_eps=0.00000015625,
|
|
use_cache=True,
|
|
tie_word_embeddings=False,
|
|
rope_theta=10000.0,
|
|
pad_token_id=151329,
|
|
eos_token_id=[151329, 151336, 151338],
|
|
bos_token_id=None,
|
|
attention_bias=True,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.partial_rotary_factor = partial_rotary_factor
|
|
self.head_dim = head_dim
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.use_cache = use_cache
|
|
self.rope_theta = rope_theta
|
|
self.attention_bias = attention_bias
|
|
self.attention_dropout = attention_dropout
|
|
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
__all__ = ["GlmConfig"]
|