team-10/venv/Lib/site-packages/transformers/models/lightglue/configuration_lightglue.py
2025-08-02 02:00:33 +02:00

157 lines
8 KiB
Python

# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/lightglue/modular_lightglue.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_lightglue.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
from ..auto import CONFIG_MAPPING, AutoConfig
from ..superpoint import SuperPointConfig
class LightGlueConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LightGlueForKeypointMatching`]. It is used to
instantiate a LightGlue model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the LightGlue
[ETH-CVG/lightglue_superpoint](https://huggingface.co/ETH-CVG/lightglue_superpoint) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
keypoint_detector_config (`Union[AutoConfig, dict]`, *optional*, defaults to `SuperPointConfig`):
The config object or dictionary of the keypoint detector.
descriptor_dim (`int`, *optional*, defaults to 256):
The dimension of the descriptors.
num_hidden_layers (`int`, *optional*, defaults to 9):
The number of self and cross attention layers.
num_attention_heads (`int`, *optional*, defaults to 4):
The number of heads in the multi-head attention.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
depth_confidence (`float`, *optional*, defaults to 0.95):
The confidence threshold used to perform early stopping
width_confidence (`float`, *optional*, defaults to 0.99):
The confidence threshold used to prune points
filter_threshold (`float`, *optional*, defaults to 0.1):
The confidence threshold used to filter matches
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The activation function to be used in the hidden layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
attention_bias (`bool`, *optional*, defaults to `True`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether to trust remote code when using other models than SuperPoint as keypoint detector.
Examples:
```python
>>> from transformers import LightGlueConfig, LightGlueForKeypointMatching
>>> # Initializing a LightGlue style configuration
>>> configuration = LightGlueConfig()
>>> # Initializing a model from the LightGlue style configuration
>>> model = LightGlueForKeypointMatching(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "lightglue"
sub_configs = {"keypoint_detector_config": AutoConfig}
def __init__(
self,
keypoint_detector_config: SuperPointConfig = None,
descriptor_dim: int = 256,
num_hidden_layers: int = 9,
num_attention_heads: int = 4,
num_key_value_heads=None,
depth_confidence: float = 0.95,
width_confidence: float = 0.99,
filter_threshold: float = 0.1,
initializer_range: float = 0.02,
hidden_act: str = "gelu",
attention_dropout=0.0,
attention_bias=True,
trust_remote_code: bool = False,
**kwargs,
):
# LightGlue can be used with other models than SuperPoint as keypoint detector
# We provide the trust_remote_code argument to allow the use of other models
# that are not registered in the CONFIG_MAPPING dictionary (for example DISK)
self.trust_remote_code = trust_remote_code
if descriptor_dim % num_attention_heads != 0:
raise ValueError("descriptor_dim % num_heads is different from zero")
self.descriptor_dim = descriptor_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.depth_confidence = depth_confidence
self.width_confidence = width_confidence
self.filter_threshold = filter_threshold
self.initializer_range = initializer_range
# Keypoint Detector is forced into eager attention mode because SuperPoint does not have Attention
# See https://github.com/huggingface/transformers/pull/31718#discussion_r2109733153
if isinstance(keypoint_detector_config, dict):
keypoint_detector_config["model_type"] = (
keypoint_detector_config["model_type"] if "model_type" in keypoint_detector_config else "superpoint"
)
if keypoint_detector_config["model_type"] not in CONFIG_MAPPING:
keypoint_detector_config = AutoConfig.from_pretrained(
keypoint_detector_config["_name_or_path"], trust_remote_code=self.trust_remote_code
)
else:
keypoint_detector_config = CONFIG_MAPPING[keypoint_detector_config["model_type"]](
**keypoint_detector_config, attn_implementation="eager"
)
if keypoint_detector_config is None:
keypoint_detector_config = CONFIG_MAPPING["superpoint"](attn_implementation="eager")
self.keypoint_detector_config = keypoint_detector_config
self.hidden_size = descriptor_dim
self.intermediate_size = descriptor_dim * 2
self.hidden_act = hidden_act
self.attention_dropout = attention_dropout
self.attention_bias = attention_bias
super().__init__(**kwargs)
__all__ = ["LightGlueConfig"]