team-10/venv/Lib/site-packages/transformers/models/wav2vec2/processing_wav2vec2.py
2025-08-02 02:00:33 +02:00

200 lines
8.3 KiB
Python

# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Speech processor class for Wav2Vec2
"""
import warnings
from contextlib import contextmanager
from typing import Optional, Union
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import AudioInput, PreTokenizedInput, TextInput
from .feature_extraction_wav2vec2 import Wav2Vec2FeatureExtractor
from .tokenization_wav2vec2 import Wav2Vec2CTCTokenizer
class Wav2Vec2ProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {}
class Wav2Vec2Processor(ProcessorMixin):
r"""
Constructs a Wav2Vec2 processor which wraps a Wav2Vec2 feature extractor and a Wav2Vec2 CTC tokenizer into a single
processor.
[`Wav2Vec2Processor`] offers all the functionalities of [`Wav2Vec2FeatureExtractor`] and [`PreTrainedTokenizer`].
See the docstring of [`~Wav2Vec2Processor.__call__`] and [`~Wav2Vec2Processor.decode`] for more information.
Args:
feature_extractor (`Wav2Vec2FeatureExtractor`):
An instance of [`Wav2Vec2FeatureExtractor`]. The feature extractor is a required input.
tokenizer ([`PreTrainedTokenizer`]):
An instance of [`PreTrainedTokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "Wav2Vec2FeatureExtractor"
tokenizer_class = "AutoTokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
try:
return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
except (OSError, ValueError):
warnings.warn(
f"Loading a tokenizer inside {cls.__name__} from a config that does not"
" include a `tokenizer_class` attribute is deprecated and will be "
"removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`"
" attribute to either your `config.json` or `tokenizer_config.json` "
"file to suppress this warning: ",
FutureWarning,
)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(pretrained_model_name_or_path, **kwargs)
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
return cls(feature_extractor=feature_extractor, tokenizer=tokenizer)
def __call__(
self,
audio: AudioInput = None,
text: Optional[Union[str, list[str], TextInput, PreTokenizedInput]] = None,
images=None,
videos=None,
**kwargs: Unpack[Wav2Vec2ProcessorKwargs],
):
"""
This method forwards all arguments to [`Wav2Vec2FeatureExtractor.__call__`] and/or
[`PreTrainedTokenizer.__call__`] depending on the input modality and returns their outputs. If both modalities are passed, [`Wav2Vec2FeatureExtractor.__call__`] and [`PreTrainedTokenizer.__call__`] are called.
Args:
audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
An audio input is passed to [`Wav2Vec2FeatureExtractor.__call__`].
text (`str`, `List[str]`, *optional*):
A text input is passed to [`PreTrainedTokenizer.__call__`].
Returns:
This method returns the results of each `call` method. If both are used, the output is a dictionary containing the results of both.
"""
if "raw_speech" in kwargs:
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.")
audio = kwargs.pop("raw_speech")
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process.")
output_kwargs = self._merge_kwargs(
Wav2Vec2ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(
audio,
**output_kwargs["audio_kwargs"],
**output_kwargs["text_kwargs"],
**output_kwargs["common_kwargs"],
)
if audio is not None:
inputs = self.feature_extractor(audio, **output_kwargs["audio_kwargs"])
if text is not None:
encodings = self.tokenizer(text, **output_kwargs["text_kwargs"])
if text is None:
return inputs
elif audio is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def pad(self, *args, **kwargs):
"""
This method operates on batches of extracted features and/or tokenized text. It forwards all arguments to
[`Wav2Vec2FeatureExtractor.pad`] and/or [`PreTrainedTokenizer.pad`] depending on the input modality and returns their outputs. If both modalities are passed, [`Wav2Vec2FeatureExtractor.pad`] and [`PreTrainedTokenizer.pad`] are called.
Args:
input_features:
When the first argument is a dictionary containing a batch of tensors, or the `input_features` argument is present, it is passed to [`Wav2Vec2FeatureExtractor.pad`].
labels:
When the `label` argument is present, it is passed to [`PreTrainedTokenizer.pad`].
Returns:
This method returns the results of each `pad` method. If both are used, the output is a dictionary containing the results of both.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*args, **kwargs)
input_features = kwargs.pop("input_features", None)
labels = kwargs.pop("labels", None)
if len(args) > 0:
input_features = args[0]
args = args[1:]
if input_features is not None:
input_features = self.feature_extractor.pad(input_features, *args, **kwargs)
if labels is not None:
labels = self.tokenizer.pad(labels, **kwargs)
if labels is None:
return input_features
elif input_features is None:
return labels
else:
input_features["labels"] = labels["input_ids"]
return input_features
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@contextmanager
def as_target_processor(self):
"""
Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning
Wav2Vec2.
"""
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your audio inputs, or in a separate call."
)
self._in_target_context_manager = True
self.current_processor = self.tokenizer
yield
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
__all__ = ["Wav2Vec2Processor"]