296 lines
14 KiB
Python
296 lines
14 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import TYPE_CHECKING, Any, Optional
|
|
|
|
from .base import HfQuantizer
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ..modeling_utils import PreTrainedModel
|
|
|
|
from ..utils import is_accelerate_available, is_fbgemm_gpu_available, is_torch_available, logging
|
|
from .quantizers_utils import get_module_from_name
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class FbgemmFp8HfQuantizer(HfQuantizer):
|
|
"""
|
|
FP8 quantization using fbgemm kernels
|
|
"""
|
|
|
|
requires_parameters_quantization = True
|
|
requires_calibration = False
|
|
|
|
required_packages = ["fbgemm-gpu", "accelerate"]
|
|
|
|
def __init__(self, quantization_config, **kwargs):
|
|
super().__init__(quantization_config, **kwargs)
|
|
self.quantization_config = quantization_config
|
|
|
|
def validate_environment(self, *args, **kwargs):
|
|
if not is_torch_available():
|
|
raise ImportError(
|
|
"Using fbgemm fp8 quantization requires torch >= 2.1.0"
|
|
"Please install the latest version of torch ( pip install --upgrade torch )"
|
|
)
|
|
if not is_fbgemm_gpu_available():
|
|
raise ImportError(
|
|
"Using fbgemm fp8 quantization requires fbgemm-gpu library"
|
|
"Please install the latest version of fbgemm-gpu library by following : https://pytorch.org/FBGEMM/fbgemm_gpu-development/InstallationInstructions.html#fbgemm-gpu-install-libraries"
|
|
)
|
|
|
|
if not is_accelerate_available("0.32.2"):
|
|
raise ImportError(
|
|
"Loading an FP8 quantized model requires accelerate > 0.32.1 (`pip install --upgrade accelerate`)"
|
|
)
|
|
|
|
if not torch.cuda.is_available():
|
|
raise RuntimeError("Using FP8 quantized models with fbgemm kernels requires a GPU")
|
|
|
|
compute_capability = torch.cuda.get_device_capability()
|
|
major, minor = compute_capability
|
|
if major < 9:
|
|
raise ValueError(
|
|
"FP8 quantized models is only supported on GPUs with compute capability >= 9.0 (e.g H100)"
|
|
)
|
|
|
|
device_map = kwargs.get("device_map", None)
|
|
if device_map is None:
|
|
logger.warning_once(
|
|
"You have loaded an FP8 model on CPU and have a CUDA device available, make sure to set "
|
|
"your model on a GPU device in order to run your model. To remove this warning, pass device_map = 'cuda'. "
|
|
)
|
|
elif device_map is not None:
|
|
if (
|
|
not self.pre_quantized
|
|
and isinstance(device_map, dict)
|
|
and ("cpu" in device_map.values() or "disk" in device_map.values())
|
|
):
|
|
raise ValueError(
|
|
"You are attempting to load an FP8 model with a device_map that contains a CPU or disk device."
|
|
"This is not supported when the model is quantized on the fly. "
|
|
"Please use a quantized checkpoint or remove the CPU or disk device from the device_map."
|
|
)
|
|
|
|
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
|
|
if torch_dtype is None:
|
|
torch_dtype = torch.bfloat16
|
|
logger.info(
|
|
"Overriding torch_dtype=%s with `torch_dtype=torch.bloat16` due to "
|
|
"requirements of `fbgemm-gpu` to enable model loading in fp8. "
|
|
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
|
|
" torch_dtype=torch.bfloat16 to remove this warning.",
|
|
torch_dtype,
|
|
)
|
|
elif torch_dtype == torch.float16:
|
|
raise ValueError(
|
|
"You cannot use FP8 with torch_dtype=torch.float16.We recommend you passing torch_dtype=torch.bfloat16"
|
|
)
|
|
return torch_dtype
|
|
|
|
def check_quantized_param(
|
|
self,
|
|
model: "PreTrainedModel",
|
|
param_value: "torch.Tensor",
|
|
param_name: str,
|
|
state_dict: dict[str, Any],
|
|
**kwargs,
|
|
):
|
|
from ..integrations import FbgemmFp8Linear, FbgemmFp8Llama4TextExperts
|
|
|
|
module, tensor_name = get_module_from_name(model, param_name)
|
|
|
|
if isinstance(module, FbgemmFp8Linear):
|
|
if self.pre_quantized or tensor_name == "bias":
|
|
if tensor_name == "weight" and param_value.dtype != torch.float8_e4m3fn:
|
|
raise ValueError("Expect quantized weights but got an unquantized weight")
|
|
return False
|
|
else:
|
|
if tensor_name == "weight_scale":
|
|
raise ValueError("Expect unquantized weights but got a quantized weight_scale")
|
|
return True
|
|
if isinstance(module, FbgemmFp8Llama4TextExperts):
|
|
if self.pre_quantized or tensor_name == "bias":
|
|
return False
|
|
else:
|
|
if tensor_name == "gate_up_proj_scale" or tensor_name == "down_proj_scale":
|
|
raise ValueError("Expect unquantized weights but got a quantized weight_scale")
|
|
return True
|
|
return False
|
|
|
|
def create_quantized_param(
|
|
self,
|
|
model: "PreTrainedModel",
|
|
param_value: "torch.Tensor",
|
|
param_name: str,
|
|
target_device: "torch.device",
|
|
state_dict: dict[str, Any],
|
|
unexpected_keys: Optional[list[str]] = None,
|
|
):
|
|
"""
|
|
Quantizes weights into weight and weight_scale
|
|
"""
|
|
|
|
from ..integrations import FbgemmFp8Llama4TextExperts
|
|
|
|
module, tensor_name = get_module_from_name(model, param_name)
|
|
if isinstance(module, FbgemmFp8Llama4TextExperts):
|
|
if tensor_name == "gate_up_proj":
|
|
# Process each expert separately
|
|
# Transpose the second and third dimension
|
|
transposed_param = param_value.transpose(1, 2)
|
|
|
|
# Reshape to 2D for quantization
|
|
original_shape = transposed_param.shape
|
|
flattened_param = transposed_param.reshape(-1, original_shape[-1])
|
|
|
|
# Quantize using per row instead of per column
|
|
new_value_flat, weight_scale_flat = torch.ops.fbgemm.quantize_fp8_per_row(flattened_param)
|
|
|
|
# Reshape back to original dimensions
|
|
new_value = new_value_flat.reshape(original_shape)
|
|
new_value = new_value.transpose(1, 2)
|
|
weight_scale = weight_scale_flat.reshape(original_shape[0], 1, original_shape[1])
|
|
elif tensor_name == "down_proj":
|
|
# Process each expert separately
|
|
# Transpose the weights for proper quantization
|
|
transposed_param = param_value.transpose(1, 2)
|
|
|
|
# Reshape to 2D for quantization
|
|
original_shape = transposed_param.shape
|
|
flattened_param = transposed_param.reshape(-1, original_shape[-1])
|
|
|
|
# Quantize using per column
|
|
new_value_flat, weight_scale_flat = torch.ops.fbgemm.quantize_fp8_per_row(flattened_param)
|
|
|
|
# Reshape back to original dimensions
|
|
new_value = new_value_flat.reshape(original_shape)
|
|
new_value = new_value.transpose(1, 2)
|
|
weight_scale = weight_scale_flat.reshape(original_shape[0], original_shape[1], 1)
|
|
|
|
module._parameters[f"{tensor_name}_scale"] = torch.nn.Parameter(weight_scale.to(target_device))
|
|
else:
|
|
new_value, weight_scale = torch.ops.fbgemm.quantize_fp8_per_row(param_value)
|
|
module._parameters[f"{tensor_name}_scale"] = torch.nn.Parameter(
|
|
weight_scale.view(weight_scale.shape[0], 1).to(target_device)
|
|
)
|
|
|
|
module._parameters[tensor_name] = torch.nn.Parameter(new_value.to(target_device))
|
|
|
|
if unexpected_keys is not None and param_name in unexpected_keys:
|
|
unexpected_keys.remove(param_name)
|
|
del param_name
|
|
|
|
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
|
|
return model
|
|
|
|
def _process_model_before_weight_loading(
|
|
self,
|
|
model: "PreTrainedModel",
|
|
keep_in_fp32_modules: Optional[list[str]] = None,
|
|
**kwargs,
|
|
):
|
|
from ..integrations import replace_with_fbgemm_fp8_linear
|
|
|
|
tp_plan = model._tp_plan
|
|
self.modules_to_not_convert = self.get_modules_to_not_convert(
|
|
model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules
|
|
)
|
|
|
|
config = model.config
|
|
model = replace_with_fbgemm_fp8_linear(
|
|
model,
|
|
modules_to_not_convert=self.modules_to_not_convert,
|
|
quantization_config=self.quantization_config,
|
|
pre_quantized=self.pre_quantized,
|
|
config=config,
|
|
tp_plan=tp_plan,
|
|
)
|
|
|
|
model.config.quantization_config = self.quantization_config
|
|
|
|
def update_missing_keys(self, model, missing_keys: list[str], prefix: str) -> list[str]:
|
|
from ..integrations import FbgemmFp8Linear, FbgemmFp8Llama4TextExperts
|
|
|
|
not_missing_keys = []
|
|
for name, module in model.named_modules():
|
|
if isinstance(module, FbgemmFp8Linear) or isinstance(module, FbgemmFp8Llama4TextExperts):
|
|
for missing in missing_keys:
|
|
if (
|
|
(name in missing or name in f"{prefix}.{missing}")
|
|
and not missing.endswith(".weight")
|
|
and not missing.endswith(".bias")
|
|
):
|
|
not_missing_keys.append(missing)
|
|
return [k for k in missing_keys if k not in not_missing_keys]
|
|
|
|
def update_tp_plan(self, config):
|
|
if "Llama4" in config.__class__.__name__:
|
|
text_plan = {
|
|
# We are using a different tp plan with local_colwise and local_rowwise for the attention because fbgemm operations cannot be parallelized
|
|
# With local_colwise and local_rowwise, all the operations are done locally, and we add a gather operation to gather the results instead of
|
|
# using dtensors
|
|
"layers.*.self_attn.q_proj.weight": "local_colwise",
|
|
"layers.*.self_attn.q_proj.weight_scale": "local_colwise",
|
|
"layers.*.self_attn.k_proj.weight": "local_colwise",
|
|
"layers.*.self_attn.k_proj.weight_scale": "local_colwise",
|
|
"layers.*.self_attn.v_proj.weight": "local_colwise",
|
|
"layers.*.self_attn.v_proj.weight_scale": "local_colwise",
|
|
"layers.*.self_attn.o_proj.weight": "local_rowwise",
|
|
"layers.*.self_attn": "gather",
|
|
# We keep the same sequence_parallel plan for layernorms
|
|
"layers.*.input_layernorm.weight": "sequence_parallel",
|
|
"layers.*.post_attention_layernorm.weight": "sequence_parallel",
|
|
"norm.weight": "sequence_parallel",
|
|
# We keep the same local_colwise and local_rowwise plan for the feed forward shared expert
|
|
# We also add scales for the shared expert, for local_colwise the scale is also local_colwise
|
|
# For local_rowwise the scale is replicated, so we don't need to add it
|
|
"layers.*.feed_forward.shared_expert.gate_proj.weight": "local_colwise",
|
|
"layers.*.feed_forward.shared_expert.gate_proj.weight_scale": "local_colwise",
|
|
"layers.*.feed_forward.shared_expert.up_proj.weight": "local_colwise",
|
|
"layers.*.feed_forward.shared_expert.up_proj.weight_scale": "local_colwise",
|
|
"layers.*.feed_forward.shared_expert.down_proj.weight": "local_rowwise",
|
|
"layers.*.feed_forward.experts": "local",
|
|
"layers.*.feed_forward": "gather",
|
|
"layers.*.feed_forward.experts.*.gate_proj.weight": "local_colwise",
|
|
"layers.*.feed_forward.experts.*.gate_proj.weight_scale": "local_colwise",
|
|
"layers.*.feed_forward.experts.*.up_proj.weight": "local_colwise",
|
|
"layers.*.feed_forward.experts.*.up_proj.weight_scale": "local_colwise",
|
|
"layers.*.feed_forward.experts.*.down_proj.weight": "local_rowwise",
|
|
# For Fused implementation we use local_packed_rowwise for the gate_up_proj, and the same for the packed scales
|
|
# We use local_colwise for the down_proj, and the scales are replicated so we don't add them
|
|
"layers.*.feed_forward.experts.gate_up_proj": "local_packed_rowwise",
|
|
"layers.*.feed_forward.experts.gate_up_proj_scale": "local_packed_rowwise",
|
|
"layers.*.feed_forward.experts.down_proj": "local_colwise",
|
|
}
|
|
if config.get_text_config() is not None:
|
|
config.get_text_config().base_model_tp_plan = text_plan
|
|
else:
|
|
config.base_model_tp_plan = text_plan
|
|
return config
|
|
|
|
return config
|
|
|
|
def is_serializable(self, safe_serialization=None):
|
|
return True
|
|
|
|
@property
|
|
def is_trainable(self) -> bool:
|
|
return False
|