team-10/venv/Lib/site-packages/transformers/quantizers/quantizer_fp_quant.py
2025-08-02 02:00:33 +02:00

183 lines
7.3 KiB
Python

# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Optional
from .base import HfQuantizer
from .quantizers_utils import get_module_from_name
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
from ..utils import is_fp_quant_available, is_qutlass_available, is_torch_available, logging
from ..utils.quantization_config import QuantizationConfigMixin
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class FPQuantHfQuantizer(HfQuantizer):
"""
Quantizer for the FP-Quant method. Enables the loading of prequantized models and in-flight quantization of full-precision models.
"""
requires_calibration = False
requires_parameters_quantization = True
is_qat_trainable = False
required_packages = ["fp_quant"]
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
super().__init__(quantization_config, **kwargs)
self.quantization_config = quantization_config
def validate_environment(self, device_map, **kwargs):
if not torch.cuda.is_available():
raise NotImplementedError(
"FPQuant quantization is only supported on GPU. Please use a different quantizer."
)
if not is_qutlass_available() and not self.quantization_config.pseudoquantization:
raise ImportError(
"Using `fp_quant` with real quantization requires a **Blackwell GPU** and qutlass: `git clone https://github.com/IST-DASLab/qutlass.git && cd qutlass && pip install --no-build-isolation .`. You can use `FPQuantConfig(pseudoquantization=True, ...)` to use Triton-based pseudo-quantization. It doesn't provide any speedups but emulates the quantization behavior of the real quantization."
)
if self.quantization_config.pseudoquantization:
logger.warning(
"Using pseudo-quantization for FP-Quant. This doesn't provide any speedups but emulates the quantization behavior of the real quantization."
)
if not is_fp_quant_available():
raise ImportError("Using `fp_quant` quantization requires fp_quant: `pip install fp_quant`")
if device_map is None:
raise ValueError(
"You are attempting to load a FPQuant model without setting device_map."
" Please set device_map comprised of 'cuda' devices."
)
elif isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()):
raise ValueError(
"You are attempting to load a FPQuant model with a device_map that contains a CPU or disk device."
" This is not supported. Please remove the CPU or disk device from the device_map."
)
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
logger.info("`torch_dtype` is None. Setting `torch_dtype=torch.bfloat16` for qutlass compatibility.")
torch_dtype = torch.bfloat16
elif torch_dtype != torch.bfloat16:
raise ValueError(
f"Invalid `torch_dtype` {torch_dtype}. fp_quant quantization only supports `torch_dtype=torch.bfloat16`."
)
return torch_dtype
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: dict[str, Any],
unexpected_keys: Optional[list[str]] = None,
):
module, _ = get_module_from_name(model, param_name)
# The module holds either:
# * `weight` when `store_master_weights=True`
# * `qweight` and `scales` when `store_master_weights=False` and `pseudoquantization=False`
# * `dqweight` when `store_master_weights=False` and `pseudoquantization=True`
if param_name.endswith(".qweight"):
# Loading a real quantized checkpoint without master weights
module.qweight = torch.nn.Parameter(
param_value.to(target_device),
requires_grad=False,
)
module.weight = None
module.dqweight = None
return
if param_name.endswith(".dqweight"):
# Loading a pseudo-quantized checkpoint without master weights
module.dqweight = torch.nn.Parameter(param_value.to(target_device))
module.weight = None
module.qweight = None
module.scales = None
return
# Loading master weights or an unquantized checkpoint
module.weight = torch.nn.Parameter(param_value.to(target_device))
# Let pre-forward handle the quantization and set None where necessary
module.pre_forward()
if unexpected_keys is not None and param_name in unexpected_keys:
unexpected_keys.remove(param_name)
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
**kwargs,
):
from fp_quant import replace_with_fp_quant_linear
from ..integrations.fp_quant import adapt_fp_quant_config
replace_with_fp_quant_linear(
model,
fp_quant_linear_config=adapt_fp_quant_config(self.quantization_config),
)
model.config.quantization_config = self.quantization_config
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
return model
def update_missing_keys(self, model, missing_keys: list[str], prefix: str) -> list[str]:
from fp_quant import FPQuantLinear
fp_quant_names = {name for name, module in model.named_modules() if isinstance(module, FPQuantLinear)}
def should_exclude(key: str) -> bool:
if key.endswith(".weight") or key.endswith(".bias"):
return False
full_key = f"{prefix}.{key}"
return any(name in key or name in full_key for name in fp_quant_names)
return [key for key in missing_keys if not should_exclude(key)]
@property
def is_trainable(self, model: Optional["PreTrainedModel"] = None):
return False
def is_serializable(self, safe_serialization=None):
return True
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: dict[str, Any],
**kwargs,
) -> bool:
from fp_quant import FPQuantLinear
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module, FPQuantLinear) and tensor_name in ["weight", "qweight", "dqweight"]:
# Only quantize weights of FPQuantLinear modules that are not already quantized
return True
else:
return False