489 lines
23 KiB
Python
489 lines
23 KiB
Python
# Copyright 2025 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
|
# All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
|
# and https://github.com/hojonathanho/diffusion
|
|
|
|
import math
|
|
from dataclasses import dataclass
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config
|
|
from ..utils import BaseOutput
|
|
from ..utils.torch_utils import randn_tensor
|
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
|
|
|
|
|
|
@dataclass
|
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
|
|
class DDIMSchedulerOutput(BaseOutput):
|
|
"""
|
|
Output class for the scheduler's `step` function output.
|
|
|
|
Args:
|
|
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
|
denoising loop.
|
|
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
|
`pred_original_sample` can be used to preview progress or for guidance.
|
|
"""
|
|
|
|
prev_sample: torch.Tensor
|
|
pred_original_sample: Optional[torch.Tensor] = None
|
|
|
|
|
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
|
def betas_for_alpha_bar(
|
|
num_diffusion_timesteps,
|
|
max_beta=0.999,
|
|
alpha_transform_type="cosine",
|
|
):
|
|
"""
|
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
|
(1-beta) over time from t = [0,1].
|
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
|
to that part of the diffusion process.
|
|
|
|
|
|
Args:
|
|
num_diffusion_timesteps (`int`): the number of betas to produce.
|
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
|
prevent singularities.
|
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
|
Choose from `cosine` or `exp`
|
|
|
|
Returns:
|
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
|
"""
|
|
if alpha_transform_type == "cosine":
|
|
|
|
def alpha_bar_fn(t):
|
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
|
|
|
elif alpha_transform_type == "exp":
|
|
|
|
def alpha_bar_fn(t):
|
|
return math.exp(t * -12.0)
|
|
|
|
else:
|
|
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
|
|
|
betas = []
|
|
for i in range(num_diffusion_timesteps):
|
|
t1 = i / num_diffusion_timesteps
|
|
t2 = (i + 1) / num_diffusion_timesteps
|
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
|
return torch.tensor(betas, dtype=torch.float32)
|
|
|
|
|
|
def rescale_zero_terminal_snr(alphas_cumprod):
|
|
"""
|
|
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
|
|
|
|
|
|
Args:
|
|
betas (`torch.Tensor`):
|
|
the betas that the scheduler is being initialized with.
|
|
|
|
Returns:
|
|
`torch.Tensor`: rescaled betas with zero terminal SNR
|
|
"""
|
|
|
|
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
|
|
|
# Store old values.
|
|
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
|
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
|
|
|
# Shift so the last timestep is zero.
|
|
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
|
|
|
# Scale so the first timestep is back to the old value.
|
|
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
|
|
|
# Convert alphas_bar_sqrt to betas
|
|
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
|
|
|
return alphas_bar
|
|
|
|
|
|
class CogVideoXDPMScheduler(SchedulerMixin, ConfigMixin):
|
|
"""
|
|
`DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
|
non-Markovian guidance.
|
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
|
methods the library implements for all schedulers such as loading and saving.
|
|
|
|
Args:
|
|
num_train_timesteps (`int`, defaults to 1000):
|
|
The number of diffusion steps to train the model.
|
|
beta_start (`float`, defaults to 0.0001):
|
|
The starting `beta` value of inference.
|
|
beta_end (`float`, defaults to 0.02):
|
|
The final `beta` value.
|
|
beta_schedule (`str`, defaults to `"linear"`):
|
|
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
|
trained_betas (`np.ndarray`, *optional*):
|
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
|
clip_sample (`bool`, defaults to `True`):
|
|
Clip the predicted sample for numerical stability.
|
|
clip_sample_range (`float`, defaults to 1.0):
|
|
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
|
set_alpha_to_one (`bool`, defaults to `True`):
|
|
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
|
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
|
otherwise it uses the alpha value at step 0.
|
|
steps_offset (`int`, defaults to 0):
|
|
An offset added to the inference steps, as required by some model families.
|
|
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
|
Video](https://imagen.research.google/video/paper.pdf) paper).
|
|
thresholding (`bool`, defaults to `False`):
|
|
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
|
as Stable Diffusion.
|
|
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
|
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
|
sample_max_value (`float`, defaults to 1.0):
|
|
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
|
timestep_spacing (`str`, defaults to `"leading"`):
|
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
|
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
|
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
|
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
|
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
|
"""
|
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
|
order = 1
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
num_train_timesteps: int = 1000,
|
|
beta_start: float = 0.00085,
|
|
beta_end: float = 0.0120,
|
|
beta_schedule: str = "scaled_linear",
|
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
|
clip_sample: bool = True,
|
|
set_alpha_to_one: bool = True,
|
|
steps_offset: int = 0,
|
|
prediction_type: str = "epsilon",
|
|
clip_sample_range: float = 1.0,
|
|
sample_max_value: float = 1.0,
|
|
timestep_spacing: str = "leading",
|
|
rescale_betas_zero_snr: bool = False,
|
|
snr_shift_scale: float = 3.0,
|
|
):
|
|
if trained_betas is not None:
|
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
|
elif beta_schedule == "linear":
|
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
|
elif beta_schedule == "scaled_linear":
|
|
# this schedule is very specific to the latent diffusion model.
|
|
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float64) ** 2
|
|
elif beta_schedule == "squaredcos_cap_v2":
|
|
# Glide cosine schedule
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
|
else:
|
|
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
|
|
|
self.alphas = 1.0 - self.betas
|
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
|
|
|
# Modify: SNR shift following SD3
|
|
self.alphas_cumprod = self.alphas_cumprod / (snr_shift_scale + (1 - snr_shift_scale) * self.alphas_cumprod)
|
|
|
|
# Rescale for zero SNR
|
|
if rescale_betas_zero_snr:
|
|
self.alphas_cumprod = rescale_zero_terminal_snr(self.alphas_cumprod)
|
|
|
|
# At every step in ddim, we are looking into the previous alphas_cumprod
|
|
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
|
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
|
# whether we use the final alpha of the "non-previous" one.
|
|
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
|
|
|
# standard deviation of the initial noise distribution
|
|
self.init_noise_sigma = 1.0
|
|
|
|
# setable values
|
|
self.num_inference_steps = None
|
|
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
|
|
|
def _get_variance(self, timestep, prev_timestep):
|
|
alpha_prod_t = self.alphas_cumprod[timestep]
|
|
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
|
beta_prod_t = 1 - alpha_prod_t
|
|
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
|
|
|
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
|
|
|
return variance
|
|
|
|
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
|
|
"""
|
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
|
current timestep.
|
|
|
|
Args:
|
|
sample (`torch.Tensor`):
|
|
The input sample.
|
|
timestep (`int`, *optional*):
|
|
The current timestep in the diffusion chain.
|
|
|
|
Returns:
|
|
`torch.Tensor`:
|
|
A scaled input sample.
|
|
"""
|
|
return sample
|
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
|
"""
|
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
|
|
|
Args:
|
|
num_inference_steps (`int`):
|
|
The number of diffusion steps used when generating samples with a pre-trained model.
|
|
"""
|
|
|
|
if num_inference_steps > self.config.num_train_timesteps:
|
|
raise ValueError(
|
|
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
|
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
|
f" maximal {self.config.num_train_timesteps} timesteps."
|
|
)
|
|
|
|
self.num_inference_steps = num_inference_steps
|
|
|
|
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
|
|
if self.config.timestep_spacing == "linspace":
|
|
timesteps = (
|
|
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
|
|
.round()[::-1]
|
|
.copy()
|
|
.astype(np.int64)
|
|
)
|
|
elif self.config.timestep_spacing == "leading":
|
|
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
|
# creates integer timesteps by multiplying by ratio
|
|
# casting to int to avoid issues when num_inference_step is power of 3
|
|
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
|
|
timesteps += self.config.steps_offset
|
|
elif self.config.timestep_spacing == "trailing":
|
|
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
|
|
# creates integer timesteps by multiplying by ratio
|
|
# casting to int to avoid issues when num_inference_step is power of 3
|
|
timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
|
|
timesteps -= 1
|
|
else:
|
|
raise ValueError(
|
|
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
|
|
)
|
|
|
|
self.timesteps = torch.from_numpy(timesteps).to(device)
|
|
|
|
def get_variables(self, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back=None):
|
|
lamb = ((alpha_prod_t / (1 - alpha_prod_t)) ** 0.5).log()
|
|
lamb_next = ((alpha_prod_t_prev / (1 - alpha_prod_t_prev)) ** 0.5).log()
|
|
h = lamb_next - lamb
|
|
|
|
if alpha_prod_t_back is not None:
|
|
lamb_previous = ((alpha_prod_t_back / (1 - alpha_prod_t_back)) ** 0.5).log()
|
|
h_last = lamb - lamb_previous
|
|
r = h_last / h
|
|
return h, r, lamb, lamb_next
|
|
else:
|
|
return h, None, lamb, lamb_next
|
|
|
|
def get_mult(self, h, r, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back):
|
|
mult1 = ((1 - alpha_prod_t_prev) / (1 - alpha_prod_t)) ** 0.5 * (-h).exp()
|
|
mult2 = (-2 * h).expm1() * alpha_prod_t_prev**0.5
|
|
|
|
if alpha_prod_t_back is not None:
|
|
mult3 = 1 + 1 / (2 * r)
|
|
mult4 = 1 / (2 * r)
|
|
return mult1, mult2, mult3, mult4
|
|
else:
|
|
return mult1, mult2
|
|
|
|
def step(
|
|
self,
|
|
model_output: torch.Tensor,
|
|
old_pred_original_sample: torch.Tensor,
|
|
timestep: int,
|
|
timestep_back: int,
|
|
sample: torch.Tensor,
|
|
eta: float = 0.0,
|
|
use_clipped_model_output: bool = False,
|
|
generator=None,
|
|
variance_noise: Optional[torch.Tensor] = None,
|
|
return_dict: bool = False,
|
|
) -> Union[DDIMSchedulerOutput, Tuple]:
|
|
"""
|
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
|
process from the learned model outputs (most often the predicted noise).
|
|
|
|
Args:
|
|
model_output (`torch.Tensor`):
|
|
The direct output from learned diffusion model.
|
|
timestep (`float`):
|
|
The current discrete timestep in the diffusion chain.
|
|
sample (`torch.Tensor`):
|
|
A current instance of a sample created by the diffusion process.
|
|
eta (`float`):
|
|
The weight of noise for added noise in diffusion step.
|
|
use_clipped_model_output (`bool`, defaults to `False`):
|
|
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
|
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
|
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
|
`use_clipped_model_output` has no effect.
|
|
generator (`torch.Generator`, *optional*):
|
|
A random number generator.
|
|
variance_noise (`torch.Tensor`):
|
|
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
|
itself. Useful for methods such as [`CycleDiffusion`].
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
|
|
|
|
Returns:
|
|
[`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
|
|
If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
|
|
tuple is returned where the first element is the sample tensor.
|
|
|
|
"""
|
|
if self.num_inference_steps is None:
|
|
raise ValueError(
|
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
|
)
|
|
|
|
# See formulas (12) and (16) of DDIM paper https://huggingface.co/papers/2010.02502
|
|
# Ideally, read DDIM paper in-detail understanding
|
|
|
|
# Notation (<variable name> -> <name in paper>
|
|
# - pred_noise_t -> e_theta(x_t, t)
|
|
# - pred_original_sample -> f_theta(x_t, t) or x_0
|
|
# - std_dev_t -> sigma_t
|
|
# - eta -> η
|
|
# - pred_sample_direction -> "direction pointing to x_t"
|
|
# - pred_prev_sample -> "x_t-1"
|
|
|
|
# 1. get previous step value (=t-1)
|
|
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
|
|
|
|
# 2. compute alphas, betas
|
|
alpha_prod_t = self.alphas_cumprod[timestep]
|
|
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
|
alpha_prod_t_back = self.alphas_cumprod[timestep_back] if timestep_back is not None else None
|
|
|
|
beta_prod_t = 1 - alpha_prod_t
|
|
|
|
# 3. compute predicted original sample from predicted noise also called
|
|
# "predicted x_0" of formula (12) from https://huggingface.co/papers/2010.02502
|
|
# To make style tests pass, commented out `pred_epsilon` as it is an unused variable
|
|
if self.config.prediction_type == "epsilon":
|
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
|
# pred_epsilon = model_output
|
|
elif self.config.prediction_type == "sample":
|
|
pred_original_sample = model_output
|
|
# pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
|
elif self.config.prediction_type == "v_prediction":
|
|
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
|
# pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
|
else:
|
|
raise ValueError(
|
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
|
|
" `v_prediction`"
|
|
)
|
|
|
|
h, r, lamb, lamb_next = self.get_variables(alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back)
|
|
mult = list(self.get_mult(h, r, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back))
|
|
mult_noise = (1 - alpha_prod_t_prev) ** 0.5 * (1 - (-2 * h).exp()) ** 0.5
|
|
|
|
noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype)
|
|
prev_sample = mult[0] * sample - mult[1] * pred_original_sample + mult_noise * noise
|
|
|
|
if old_pred_original_sample is None or prev_timestep < 0:
|
|
# Save a network evaluation if all noise levels are 0 or on the first step
|
|
return prev_sample, pred_original_sample
|
|
else:
|
|
denoised_d = mult[2] * pred_original_sample - mult[3] * old_pred_original_sample
|
|
noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype)
|
|
x_advanced = mult[0] * sample - mult[1] * denoised_d + mult_noise * noise
|
|
|
|
prev_sample = x_advanced
|
|
|
|
if not return_dict:
|
|
return (prev_sample, pred_original_sample)
|
|
|
|
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
|
|
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
|
def add_noise(
|
|
self,
|
|
original_samples: torch.Tensor,
|
|
noise: torch.Tensor,
|
|
timesteps: torch.IntTensor,
|
|
) -> torch.Tensor:
|
|
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
|
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
|
|
# for the subsequent add_noise calls
|
|
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
|
|
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
|
|
timesteps = timesteps.to(original_samples.device)
|
|
|
|
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
|
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
|
|
|
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
|
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
|
|
|
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
|
return noisy_samples
|
|
|
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
|
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
|
|
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
|
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
|
|
alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
|
|
timesteps = timesteps.to(sample.device)
|
|
|
|
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
|
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
|
|
|
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
|
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
|
|
|
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
|
return velocity
|
|
|
|
def __len__(self):
|
|
return self.config.num_train_timesteps
|