1221 lines
54 KiB
Python
1221 lines
54 KiB
Python
# Copyright 2025 Shuchen Xue, etc. in University of Chinese Academy of Sciences Team and The HuggingFace Team. All rights reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
# DISCLAIMER: check https://huggingface.co/papers/2309.05019
|
||
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
|
||
|
||
import math
|
||
from typing import Callable, List, Optional, Tuple, Union
|
||
|
||
import numpy as np
|
||
import torch
|
||
|
||
from ..configuration_utils import ConfigMixin, register_to_config
|
||
from ..utils import deprecate, is_scipy_available
|
||
from ..utils.torch_utils import randn_tensor
|
||
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
|
||
|
||
|
||
if is_scipy_available():
|
||
import scipy.stats
|
||
|
||
|
||
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
||
def betas_for_alpha_bar(
|
||
num_diffusion_timesteps,
|
||
max_beta=0.999,
|
||
alpha_transform_type="cosine",
|
||
):
|
||
"""
|
||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||
(1-beta) over time from t = [0,1].
|
||
|
||
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
||
to that part of the diffusion process.
|
||
|
||
|
||
Args:
|
||
num_diffusion_timesteps (`int`): the number of betas to produce.
|
||
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
||
prevent singularities.
|
||
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
||
Choose from `cosine` or `exp`
|
||
|
||
Returns:
|
||
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
||
"""
|
||
if alpha_transform_type == "cosine":
|
||
|
||
def alpha_bar_fn(t):
|
||
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
||
|
||
elif alpha_transform_type == "exp":
|
||
|
||
def alpha_bar_fn(t):
|
||
return math.exp(t * -12.0)
|
||
|
||
else:
|
||
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
||
|
||
betas = []
|
||
for i in range(num_diffusion_timesteps):
|
||
t1 = i / num_diffusion_timesteps
|
||
t2 = (i + 1) / num_diffusion_timesteps
|
||
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
||
return torch.tensor(betas, dtype=torch.float32)
|
||
|
||
|
||
class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
||
"""
|
||
`SASolverScheduler` is a fast dedicated high-order solver for diffusion SDEs.
|
||
|
||
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
||
methods the library implements for all schedulers such as loading and saving.
|
||
|
||
Args:
|
||
num_train_timesteps (`int`, defaults to 1000):
|
||
The number of diffusion steps to train the model.
|
||
beta_start (`float`, defaults to 0.0001):
|
||
The starting `beta` value of inference.
|
||
beta_end (`float`, defaults to 0.02):
|
||
The final `beta` value.
|
||
beta_schedule (`str`, defaults to `"linear"`):
|
||
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
||
trained_betas (`np.ndarray`, *optional*):
|
||
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
||
predictor_order (`int`, defaults to 2):
|
||
The predictor order which can be `1` or `2` or `3` or '4'. It is recommended to use `predictor_order=2` for
|
||
guided sampling, and `predictor_order=3` for unconditional sampling.
|
||
corrector_order (`int`, defaults to 2):
|
||
The corrector order which can be `1` or `2` or `3` or '4'. It is recommended to use `corrector_order=2` for
|
||
guided sampling, and `corrector_order=3` for unconditional sampling.
|
||
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
||
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
||
Video](https://imagen.research.google/video/paper.pdf) paper).
|
||
tau_func (`Callable`, *optional*):
|
||
Stochasticity during the sampling. Default in init is `lambda t: 1 if t >= 200 and t <= 800 else 0`.
|
||
SA-Solver will sample from vanilla diffusion ODE if tau_func is set to `lambda t: 0`. SA-Solver will sample
|
||
from vanilla diffusion SDE if tau_func is set to `lambda t: 1`. For more details, please check
|
||
https://huggingface.co/papers/2309.05019
|
||
thresholding (`bool`, defaults to `False`):
|
||
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
||
as Stable Diffusion.
|
||
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
||
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
||
sample_max_value (`float`, defaults to 1.0):
|
||
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
|
||
`algorithm_type="dpmsolver++"`.
|
||
algorithm_type (`str`, defaults to `data_prediction`):
|
||
Algorithm type for the solver; can be `data_prediction` or `noise_prediction`. It is recommended to use
|
||
`data_prediction` with `solver_order=2` for guided sampling like in Stable Diffusion.
|
||
lower_order_final (`bool`, defaults to `True`):
|
||
Whether to use lower-order solvers in the final steps. Default = True.
|
||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
||
the sigmas are determined according to a sequence of noise levels {σi}.
|
||
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
||
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
||
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
|
||
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
|
||
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
|
||
lambda_min_clipped (`float`, defaults to `-inf`):
|
||
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
|
||
cosine (`squaredcos_cap_v2`) noise schedule.
|
||
variance_type (`str`, *optional*):
|
||
Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
|
||
contains the predicted Gaussian variance.
|
||
timestep_spacing (`str`, defaults to `"linspace"`):
|
||
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
||
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
||
steps_offset (`int`, defaults to 0):
|
||
An offset added to the inference steps, as required by some model families.
|
||
"""
|
||
|
||
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
||
order = 1
|
||
|
||
@register_to_config
|
||
def __init__(
|
||
self,
|
||
num_train_timesteps: int = 1000,
|
||
beta_start: float = 0.0001,
|
||
beta_end: float = 0.02,
|
||
beta_schedule: str = "linear",
|
||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||
predictor_order: int = 2,
|
||
corrector_order: int = 2,
|
||
prediction_type: str = "epsilon",
|
||
tau_func: Optional[Callable] = None,
|
||
thresholding: bool = False,
|
||
dynamic_thresholding_ratio: float = 0.995,
|
||
sample_max_value: float = 1.0,
|
||
algorithm_type: str = "data_prediction",
|
||
lower_order_final: bool = True,
|
||
use_karras_sigmas: Optional[bool] = False,
|
||
use_exponential_sigmas: Optional[bool] = False,
|
||
use_beta_sigmas: Optional[bool] = False,
|
||
use_flow_sigmas: Optional[bool] = False,
|
||
flow_shift: Optional[float] = 1.0,
|
||
lambda_min_clipped: float = -float("inf"),
|
||
variance_type: Optional[str] = None,
|
||
timestep_spacing: str = "linspace",
|
||
steps_offset: int = 0,
|
||
):
|
||
if self.config.use_beta_sigmas and not is_scipy_available():
|
||
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
||
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||
raise ValueError(
|
||
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
||
)
|
||
if trained_betas is not None:
|
||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||
elif beta_schedule == "linear":
|
||
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
||
elif beta_schedule == "scaled_linear":
|
||
# this schedule is very specific to the latent diffusion model.
|
||
self.betas = (
|
||
torch.linspace(
|
||
beta_start**0.5,
|
||
beta_end**0.5,
|
||
num_train_timesteps,
|
||
dtype=torch.float32,
|
||
)
|
||
** 2
|
||
)
|
||
elif beta_schedule == "squaredcos_cap_v2":
|
||
# Glide cosine schedule
|
||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||
else:
|
||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||
|
||
self.alphas = 1.0 - self.betas
|
||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||
# Currently we only support VP-type noise schedule
|
||
self.alpha_t = torch.sqrt(self.alphas_cumprod)
|
||
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
|
||
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
|
||
self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
|
||
|
||
# standard deviation of the initial noise distribution
|
||
self.init_noise_sigma = 1.0
|
||
|
||
if algorithm_type not in ["data_prediction", "noise_prediction"]:
|
||
raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
|
||
|
||
# setable values
|
||
self.num_inference_steps = None
|
||
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
|
||
self.timesteps = torch.from_numpy(timesteps)
|
||
self.timestep_list = [None] * max(predictor_order, corrector_order - 1)
|
||
self.model_outputs = [None] * max(predictor_order, corrector_order - 1)
|
||
|
||
if tau_func is None:
|
||
self.tau_func = lambda t: 1 if t >= 200 and t <= 800 else 0
|
||
else:
|
||
self.tau_func = tau_func
|
||
self.predict_x0 = algorithm_type == "data_prediction"
|
||
self.lower_order_nums = 0
|
||
self.last_sample = None
|
||
self._step_index = None
|
||
self._begin_index = None
|
||
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||
|
||
@property
|
||
def step_index(self):
|
||
"""
|
||
The index counter for current timestep. It will increase 1 after each scheduler step.
|
||
"""
|
||
return self._step_index
|
||
|
||
@property
|
||
def begin_index(self):
|
||
"""
|
||
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
||
"""
|
||
return self._begin_index
|
||
|
||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||
def set_begin_index(self, begin_index: int = 0):
|
||
"""
|
||
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||
|
||
Args:
|
||
begin_index (`int`):
|
||
The begin index for the scheduler.
|
||
"""
|
||
self._begin_index = begin_index
|
||
|
||
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
|
||
"""
|
||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||
|
||
Args:
|
||
num_inference_steps (`int`):
|
||
The number of diffusion steps used when generating samples with a pre-trained model.
|
||
device (`str` or `torch.device`, *optional*):
|
||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||
"""
|
||
# Clipping the minimum of all lambda(t) for numerical stability.
|
||
# This is critical for cosine (squaredcos_cap_v2) noise schedule.
|
||
clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
|
||
last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item()
|
||
|
||
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
|
||
if self.config.timestep_spacing == "linspace":
|
||
timesteps = (
|
||
np.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64)
|
||
)
|
||
|
||
elif self.config.timestep_spacing == "leading":
|
||
step_ratio = last_timestep // (num_inference_steps + 1)
|
||
# creates integer timesteps by multiplying by ratio
|
||
# casting to int to avoid issues when num_inference_step is power of 3
|
||
timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
|
||
timesteps += self.config.steps_offset
|
||
elif self.config.timestep_spacing == "trailing":
|
||
step_ratio = self.config.num_train_timesteps / num_inference_steps
|
||
# creates integer timesteps by multiplying by ratio
|
||
# casting to int to avoid issues when num_inference_step is power of 3
|
||
timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64)
|
||
timesteps -= 1
|
||
else:
|
||
raise ValueError(
|
||
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
|
||
)
|
||
|
||
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
||
log_sigmas = np.log(sigmas)
|
||
if self.config.use_karras_sigmas:
|
||
sigmas = np.flip(sigmas).copy()
|
||
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
||
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
||
elif self.config.use_exponential_sigmas:
|
||
sigmas = np.flip(sigmas).copy()
|
||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
||
elif self.config.use_beta_sigmas:
|
||
sigmas = np.flip(sigmas).copy()
|
||
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
||
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
||
elif self.config.use_flow_sigmas:
|
||
alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
|
||
sigmas = 1.0 - alphas
|
||
sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
|
||
timesteps = (sigmas * self.config.num_train_timesteps).copy()
|
||
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
||
else:
|
||
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
||
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
|
||
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
||
|
||
self.sigmas = torch.from_numpy(sigmas)
|
||
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
|
||
|
||
self.num_inference_steps = len(timesteps)
|
||
self.model_outputs = [
|
||
None,
|
||
] * max(self.config.predictor_order, self.config.corrector_order - 1)
|
||
self.lower_order_nums = 0
|
||
self.last_sample = None
|
||
|
||
# add an index counter for schedulers that allow duplicated timesteps
|
||
self._step_index = None
|
||
self._begin_index = None
|
||
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||
|
||
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
||
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
||
"""
|
||
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
||
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
||
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
||
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
||
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
||
|
||
https://huggingface.co/papers/2205.11487
|
||
"""
|
||
dtype = sample.dtype
|
||
batch_size, channels, *remaining_dims = sample.shape
|
||
|
||
if dtype not in (torch.float32, torch.float64):
|
||
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
||
|
||
# Flatten sample for doing quantile calculation along each image
|
||
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
||
|
||
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
||
|
||
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
||
s = torch.clamp(
|
||
s, min=1, max=self.config.sample_max_value
|
||
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
||
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
||
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
||
|
||
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
||
sample = sample.to(dtype)
|
||
|
||
return sample
|
||
|
||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
||
def _sigma_to_t(self, sigma, log_sigmas):
|
||
# get log sigma
|
||
log_sigma = np.log(np.maximum(sigma, 1e-10))
|
||
|
||
# get distribution
|
||
dists = log_sigma - log_sigmas[:, np.newaxis]
|
||
|
||
# get sigmas range
|
||
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
|
||
high_idx = low_idx + 1
|
||
|
||
low = log_sigmas[low_idx]
|
||
high = log_sigmas[high_idx]
|
||
|
||
# interpolate sigmas
|
||
w = (low - log_sigma) / (low - high)
|
||
w = np.clip(w, 0, 1)
|
||
|
||
# transform interpolation to time range
|
||
t = (1 - w) * low_idx + w * high_idx
|
||
t = t.reshape(sigma.shape)
|
||
return t
|
||
|
||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
|
||
def _sigma_to_alpha_sigma_t(self, sigma):
|
||
if self.config.use_flow_sigmas:
|
||
alpha_t = 1 - sigma
|
||
sigma_t = sigma
|
||
else:
|
||
alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
|
||
sigma_t = sigma * alpha_t
|
||
|
||
return alpha_t, sigma_t
|
||
|
||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
||
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
||
"""Constructs the noise schedule of Karras et al. (2022)."""
|
||
|
||
# Hack to make sure that other schedulers which copy this function don't break
|
||
# TODO: Add this logic to the other schedulers
|
||
if hasattr(self.config, "sigma_min"):
|
||
sigma_min = self.config.sigma_min
|
||
else:
|
||
sigma_min = None
|
||
|
||
if hasattr(self.config, "sigma_max"):
|
||
sigma_max = self.config.sigma_max
|
||
else:
|
||
sigma_max = None
|
||
|
||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||
|
||
rho = 7.0 # 7.0 is the value used in the paper
|
||
ramp = np.linspace(0, 1, num_inference_steps)
|
||
min_inv_rho = sigma_min ** (1 / rho)
|
||
max_inv_rho = sigma_max ** (1 / rho)
|
||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||
return sigmas
|
||
|
||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
||
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||
"""Constructs an exponential noise schedule."""
|
||
|
||
# Hack to make sure that other schedulers which copy this function don't break
|
||
# TODO: Add this logic to the other schedulers
|
||
if hasattr(self.config, "sigma_min"):
|
||
sigma_min = self.config.sigma_min
|
||
else:
|
||
sigma_min = None
|
||
|
||
if hasattr(self.config, "sigma_max"):
|
||
sigma_max = self.config.sigma_max
|
||
else:
|
||
sigma_max = None
|
||
|
||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||
|
||
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
|
||
return sigmas
|
||
|
||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
|
||
def _convert_to_beta(
|
||
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
|
||
) -> torch.Tensor:
|
||
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
|
||
|
||
# Hack to make sure that other schedulers which copy this function don't break
|
||
# TODO: Add this logic to the other schedulers
|
||
if hasattr(self.config, "sigma_min"):
|
||
sigma_min = self.config.sigma_min
|
||
else:
|
||
sigma_min = None
|
||
|
||
if hasattr(self.config, "sigma_max"):
|
||
sigma_max = self.config.sigma_max
|
||
else:
|
||
sigma_max = None
|
||
|
||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||
|
||
sigmas = np.array(
|
||
[
|
||
sigma_min + (ppf * (sigma_max - sigma_min))
|
||
for ppf in [
|
||
scipy.stats.beta.ppf(timestep, alpha, beta)
|
||
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
|
||
]
|
||
]
|
||
)
|
||
return sigmas
|
||
|
||
def convert_model_output(
|
||
self,
|
||
model_output: torch.Tensor,
|
||
*args,
|
||
sample: torch.Tensor = None,
|
||
**kwargs,
|
||
) -> torch.Tensor:
|
||
"""
|
||
Convert the model output to the corresponding type the data_prediction/noise_prediction algorithm needs.
|
||
Noise_prediction is designed to discretize an integral of the noise prediction model, and data_prediction is
|
||
designed to discretize an integral of the data prediction model.
|
||
|
||
<Tip>
|
||
|
||
The algorithm and model type are decoupled. You can use either data_prediction or noise_prediction for both
|
||
noise prediction and data prediction models.
|
||
|
||
</Tip>
|
||
|
||
Args:
|
||
model_output (`torch.Tensor`):
|
||
The direct output from the learned diffusion model.
|
||
sample (`torch.Tensor`):
|
||
A current instance of a sample created by the diffusion process.
|
||
|
||
Returns:
|
||
`torch.Tensor`:
|
||
The converted model output.
|
||
"""
|
||
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
||
if sample is None:
|
||
if len(args) > 1:
|
||
sample = args[1]
|
||
else:
|
||
raise ValueError("missing `sample` as a required keyword argument")
|
||
if timestep is not None:
|
||
deprecate(
|
||
"timesteps",
|
||
"1.0.0",
|
||
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
||
)
|
||
|
||
sigma = self.sigmas[self.step_index]
|
||
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
||
# SA-Solver_data_prediction needs to solve an integral of the data prediction model.
|
||
if self.config.algorithm_type in ["data_prediction"]:
|
||
if self.config.prediction_type == "epsilon":
|
||
# SA-Solver only needs the "mean" output.
|
||
if self.config.variance_type in ["learned", "learned_range"]:
|
||
model_output = model_output[:, :3]
|
||
x0_pred = (sample - sigma_t * model_output) / alpha_t
|
||
elif self.config.prediction_type == "sample":
|
||
x0_pred = model_output
|
||
elif self.config.prediction_type == "v_prediction":
|
||
x0_pred = alpha_t * sample - sigma_t * model_output
|
||
elif self.config.prediction_type == "flow_prediction":
|
||
sigma_t = self.sigmas[self.step_index]
|
||
x0_pred = sample - sigma_t * model_output
|
||
else:
|
||
raise ValueError(
|
||
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
|
||
"`v_prediction`, or `flow_prediction` for the SASolverScheduler."
|
||
)
|
||
|
||
if self.config.thresholding:
|
||
x0_pred = self._threshold_sample(x0_pred)
|
||
|
||
return x0_pred
|
||
|
||
# SA-Solver_noise_prediction needs to solve an integral of the noise prediction model.
|
||
elif self.config.algorithm_type in ["noise_prediction"]:
|
||
if self.config.prediction_type == "epsilon":
|
||
# SA-Solver only needs the "mean" output.
|
||
if self.config.variance_type in ["learned", "learned_range"]:
|
||
epsilon = model_output[:, :3]
|
||
else:
|
||
epsilon = model_output
|
||
elif self.config.prediction_type == "sample":
|
||
epsilon = (sample - alpha_t * model_output) / sigma_t
|
||
elif self.config.prediction_type == "v_prediction":
|
||
epsilon = alpha_t * model_output + sigma_t * sample
|
||
else:
|
||
raise ValueError(
|
||
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
|
||
" `v_prediction` for the SASolverScheduler."
|
||
)
|
||
|
||
if self.config.thresholding:
|
||
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
|
||
x0_pred = (sample - sigma_t * epsilon) / alpha_t
|
||
x0_pred = self._threshold_sample(x0_pred)
|
||
epsilon = (sample - alpha_t * x0_pred) / sigma_t
|
||
|
||
return epsilon
|
||
|
||
def get_coefficients_exponential_negative(self, order, interval_start, interval_end):
|
||
"""
|
||
Calculate the integral of exp(-x) * x^order dx from interval_start to interval_end
|
||
"""
|
||
assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"
|
||
|
||
if order == 0:
|
||
return torch.exp(-interval_end) * (torch.exp(interval_end - interval_start) - 1)
|
||
elif order == 1:
|
||
return torch.exp(-interval_end) * (
|
||
(interval_start + 1) * torch.exp(interval_end - interval_start) - (interval_end + 1)
|
||
)
|
||
elif order == 2:
|
||
return torch.exp(-interval_end) * (
|
||
(interval_start**2 + 2 * interval_start + 2) * torch.exp(interval_end - interval_start)
|
||
- (interval_end**2 + 2 * interval_end + 2)
|
||
)
|
||
elif order == 3:
|
||
return torch.exp(-interval_end) * (
|
||
(interval_start**3 + 3 * interval_start**2 + 6 * interval_start + 6)
|
||
* torch.exp(interval_end - interval_start)
|
||
- (interval_end**3 + 3 * interval_end**2 + 6 * interval_end + 6)
|
||
)
|
||
|
||
def get_coefficients_exponential_positive(self, order, interval_start, interval_end, tau):
|
||
"""
|
||
Calculate the integral of exp(x(1+tau^2)) * x^order dx from interval_start to interval_end
|
||
"""
|
||
assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"
|
||
|
||
# after change of variable(cov)
|
||
interval_end_cov = (1 + tau**2) * interval_end
|
||
interval_start_cov = (1 + tau**2) * interval_start
|
||
|
||
if order == 0:
|
||
return (
|
||
torch.exp(interval_end_cov) * (1 - torch.exp(-(interval_end_cov - interval_start_cov))) / (1 + tau**2)
|
||
)
|
||
elif order == 1:
|
||
return (
|
||
torch.exp(interval_end_cov)
|
||
* (
|
||
(interval_end_cov - 1)
|
||
- (interval_start_cov - 1) * torch.exp(-(interval_end_cov - interval_start_cov))
|
||
)
|
||
/ ((1 + tau**2) ** 2)
|
||
)
|
||
elif order == 2:
|
||
return (
|
||
torch.exp(interval_end_cov)
|
||
* (
|
||
(interval_end_cov**2 - 2 * interval_end_cov + 2)
|
||
- (interval_start_cov**2 - 2 * interval_start_cov + 2)
|
||
* torch.exp(-(interval_end_cov - interval_start_cov))
|
||
)
|
||
/ ((1 + tau**2) ** 3)
|
||
)
|
||
elif order == 3:
|
||
return (
|
||
torch.exp(interval_end_cov)
|
||
* (
|
||
(interval_end_cov**3 - 3 * interval_end_cov**2 + 6 * interval_end_cov - 6)
|
||
- (interval_start_cov**3 - 3 * interval_start_cov**2 + 6 * interval_start_cov - 6)
|
||
* torch.exp(-(interval_end_cov - interval_start_cov))
|
||
)
|
||
/ ((1 + tau**2) ** 4)
|
||
)
|
||
|
||
def lagrange_polynomial_coefficient(self, order, lambda_list):
|
||
"""
|
||
Calculate the coefficient of lagrange polynomial
|
||
"""
|
||
|
||
assert order in [0, 1, 2, 3]
|
||
assert order == len(lambda_list) - 1
|
||
if order == 0:
|
||
return [[1]]
|
||
elif order == 1:
|
||
return [
|
||
[
|
||
1 / (lambda_list[0] - lambda_list[1]),
|
||
-lambda_list[1] / (lambda_list[0] - lambda_list[1]),
|
||
],
|
||
[
|
||
1 / (lambda_list[1] - lambda_list[0]),
|
||
-lambda_list[0] / (lambda_list[1] - lambda_list[0]),
|
||
],
|
||
]
|
||
elif order == 2:
|
||
denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2])
|
||
denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2])
|
||
denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1])
|
||
return [
|
||
[
|
||
1 / denominator1,
|
||
(-lambda_list[1] - lambda_list[2]) / denominator1,
|
||
lambda_list[1] * lambda_list[2] / denominator1,
|
||
],
|
||
[
|
||
1 / denominator2,
|
||
(-lambda_list[0] - lambda_list[2]) / denominator2,
|
||
lambda_list[0] * lambda_list[2] / denominator2,
|
||
],
|
||
[
|
||
1 / denominator3,
|
||
(-lambda_list[0] - lambda_list[1]) / denominator3,
|
||
lambda_list[0] * lambda_list[1] / denominator3,
|
||
],
|
||
]
|
||
elif order == 3:
|
||
denominator1 = (
|
||
(lambda_list[0] - lambda_list[1])
|
||
* (lambda_list[0] - lambda_list[2])
|
||
* (lambda_list[0] - lambda_list[3])
|
||
)
|
||
denominator2 = (
|
||
(lambda_list[1] - lambda_list[0])
|
||
* (lambda_list[1] - lambda_list[2])
|
||
* (lambda_list[1] - lambda_list[3])
|
||
)
|
||
denominator3 = (
|
||
(lambda_list[2] - lambda_list[0])
|
||
* (lambda_list[2] - lambda_list[1])
|
||
* (lambda_list[2] - lambda_list[3])
|
||
)
|
||
denominator4 = (
|
||
(lambda_list[3] - lambda_list[0])
|
||
* (lambda_list[3] - lambda_list[1])
|
||
* (lambda_list[3] - lambda_list[2])
|
||
)
|
||
return [
|
||
[
|
||
1 / denominator1,
|
||
(-lambda_list[1] - lambda_list[2] - lambda_list[3]) / denominator1,
|
||
(
|
||
lambda_list[1] * lambda_list[2]
|
||
+ lambda_list[1] * lambda_list[3]
|
||
+ lambda_list[2] * lambda_list[3]
|
||
)
|
||
/ denominator1,
|
||
(-lambda_list[1] * lambda_list[2] * lambda_list[3]) / denominator1,
|
||
],
|
||
[
|
||
1 / denominator2,
|
||
(-lambda_list[0] - lambda_list[2] - lambda_list[3]) / denominator2,
|
||
(
|
||
lambda_list[0] * lambda_list[2]
|
||
+ lambda_list[0] * lambda_list[3]
|
||
+ lambda_list[2] * lambda_list[3]
|
||
)
|
||
/ denominator2,
|
||
(-lambda_list[0] * lambda_list[2] * lambda_list[3]) / denominator2,
|
||
],
|
||
[
|
||
1 / denominator3,
|
||
(-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3,
|
||
(
|
||
lambda_list[0] * lambda_list[1]
|
||
+ lambda_list[0] * lambda_list[3]
|
||
+ lambda_list[1] * lambda_list[3]
|
||
)
|
||
/ denominator3,
|
||
(-lambda_list[0] * lambda_list[1] * lambda_list[3]) / denominator3,
|
||
],
|
||
[
|
||
1 / denominator4,
|
||
(-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4,
|
||
(
|
||
lambda_list[0] * lambda_list[1]
|
||
+ lambda_list[0] * lambda_list[2]
|
||
+ lambda_list[1] * lambda_list[2]
|
||
)
|
||
/ denominator4,
|
||
(-lambda_list[0] * lambda_list[1] * lambda_list[2]) / denominator4,
|
||
],
|
||
]
|
||
|
||
def get_coefficients_fn(self, order, interval_start, interval_end, lambda_list, tau):
|
||
assert order in [1, 2, 3, 4]
|
||
assert order == len(lambda_list), "the length of lambda list must be equal to the order"
|
||
coefficients = []
|
||
lagrange_coefficient = self.lagrange_polynomial_coefficient(order - 1, lambda_list)
|
||
for i in range(order):
|
||
coefficient = 0
|
||
for j in range(order):
|
||
if self.predict_x0:
|
||
coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_positive(
|
||
order - 1 - j, interval_start, interval_end, tau
|
||
)
|
||
else:
|
||
coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_negative(
|
||
order - 1 - j, interval_start, interval_end
|
||
)
|
||
coefficients.append(coefficient)
|
||
assert len(coefficients) == order, "the length of coefficients does not match the order"
|
||
return coefficients
|
||
|
||
def stochastic_adams_bashforth_update(
|
||
self,
|
||
model_output: torch.Tensor,
|
||
*args,
|
||
sample: torch.Tensor,
|
||
noise: torch.Tensor,
|
||
order: int,
|
||
tau: torch.Tensor,
|
||
**kwargs,
|
||
) -> torch.Tensor:
|
||
"""
|
||
One step for the SA-Predictor.
|
||
|
||
Args:
|
||
model_output (`torch.Tensor`):
|
||
The direct output from the learned diffusion model at the current timestep.
|
||
prev_timestep (`int`):
|
||
The previous discrete timestep in the diffusion chain.
|
||
sample (`torch.Tensor`):
|
||
A current instance of a sample created by the diffusion process.
|
||
order (`int`):
|
||
The order of SA-Predictor at this timestep.
|
||
|
||
Returns:
|
||
`torch.Tensor`:
|
||
The sample tensor at the previous timestep.
|
||
"""
|
||
prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None)
|
||
if sample is None:
|
||
if len(args) > 1:
|
||
sample = args[1]
|
||
else:
|
||
raise ValueError("missing `sample` as a required keyword argument")
|
||
if noise is None:
|
||
if len(args) > 2:
|
||
noise = args[2]
|
||
else:
|
||
raise ValueError("missing `noise` as a required keyword argument")
|
||
if order is None:
|
||
if len(args) > 3:
|
||
order = args[3]
|
||
else:
|
||
raise ValueError("missing `order` as a required keyword argument")
|
||
if tau is None:
|
||
if len(args) > 4:
|
||
tau = args[4]
|
||
else:
|
||
raise ValueError("missing `tau` as a required keyword argument")
|
||
if prev_timestep is not None:
|
||
deprecate(
|
||
"prev_timestep",
|
||
"1.0.0",
|
||
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
||
)
|
||
model_output_list = self.model_outputs
|
||
sigma_t, sigma_s0 = (
|
||
self.sigmas[self.step_index + 1],
|
||
self.sigmas[self.step_index],
|
||
)
|
||
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
||
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
||
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
||
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
||
|
||
gradient_part = torch.zeros_like(sample)
|
||
h = lambda_t - lambda_s0
|
||
lambda_list = []
|
||
|
||
for i in range(order):
|
||
si = self.step_index - i
|
||
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
|
||
lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
|
||
lambda_list.append(lambda_si)
|
||
|
||
gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau)
|
||
|
||
x = sample
|
||
|
||
if self.predict_x0:
|
||
if (
|
||
order == 2
|
||
): ## if order = 2 we do a modification that does not influence the convergence order similar to unipc. Note: This is used only for few steps sampling.
|
||
# The added term is O(h^3). Empirically we find it will slightly improve the image quality.
|
||
# ODE case
|
||
# gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
|
||
# gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
|
||
temp_sigma = self.sigmas[self.step_index - 1]
|
||
temp_alpha_s, temp_sigma_s = self._sigma_to_alpha_sigma_t(temp_sigma)
|
||
temp_lambda_s = torch.log(temp_alpha_s) - torch.log(temp_sigma_s)
|
||
gradient_coefficients[0] += (
|
||
1.0
|
||
* torch.exp((1 + tau**2) * lambda_t)
|
||
* (h**2 / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2))
|
||
/ (lambda_s0 - temp_lambda_s)
|
||
)
|
||
gradient_coefficients[1] -= (
|
||
1.0
|
||
* torch.exp((1 + tau**2) * lambda_t)
|
||
* (h**2 / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2))
|
||
/ (lambda_s0 - temp_lambda_s)
|
||
)
|
||
|
||
for i in range(order):
|
||
if self.predict_x0:
|
||
gradient_part += (
|
||
(1 + tau**2)
|
||
* sigma_t
|
||
* torch.exp(-(tau**2) * lambda_t)
|
||
* gradient_coefficients[i]
|
||
* model_output_list[-(i + 1)]
|
||
)
|
||
else:
|
||
gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_output_list[-(i + 1)]
|
||
|
||
if self.predict_x0:
|
||
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * noise
|
||
else:
|
||
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise
|
||
|
||
if self.predict_x0:
|
||
x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part
|
||
else:
|
||
x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part
|
||
|
||
x_t = x_t.to(x.dtype)
|
||
return x_t
|
||
|
||
def stochastic_adams_moulton_update(
|
||
self,
|
||
this_model_output: torch.Tensor,
|
||
*args,
|
||
last_sample: torch.Tensor,
|
||
last_noise: torch.Tensor,
|
||
this_sample: torch.Tensor,
|
||
order: int,
|
||
tau: torch.Tensor,
|
||
**kwargs,
|
||
) -> torch.Tensor:
|
||
"""
|
||
One step for the SA-Corrector.
|
||
|
||
Args:
|
||
this_model_output (`torch.Tensor`):
|
||
The model outputs at `x_t`.
|
||
this_timestep (`int`):
|
||
The current timestep `t`.
|
||
last_sample (`torch.Tensor`):
|
||
The generated sample before the last predictor `x_{t-1}`.
|
||
this_sample (`torch.Tensor`):
|
||
The generated sample after the last predictor `x_{t}`.
|
||
order (`int`):
|
||
The order of SA-Corrector at this step.
|
||
|
||
Returns:
|
||
`torch.Tensor`:
|
||
The corrected sample tensor at the current timestep.
|
||
"""
|
||
|
||
this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None)
|
||
if last_sample is None:
|
||
if len(args) > 1:
|
||
last_sample = args[1]
|
||
else:
|
||
raise ValueError("missing `last_sample` as a required keyword argument")
|
||
if last_noise is None:
|
||
if len(args) > 2:
|
||
last_noise = args[2]
|
||
else:
|
||
raise ValueError("missing `last_noise` as a required keyword argument")
|
||
if this_sample is None:
|
||
if len(args) > 3:
|
||
this_sample = args[3]
|
||
else:
|
||
raise ValueError("missing `this_sample` as a required keyword argument")
|
||
if order is None:
|
||
if len(args) > 4:
|
||
order = args[4]
|
||
else:
|
||
raise ValueError("missing `order` as a required keyword argument")
|
||
if tau is None:
|
||
if len(args) > 5:
|
||
tau = args[5]
|
||
else:
|
||
raise ValueError("missing `tau` as a required keyword argument")
|
||
if this_timestep is not None:
|
||
deprecate(
|
||
"this_timestep",
|
||
"1.0.0",
|
||
"Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
||
)
|
||
|
||
model_output_list = self.model_outputs
|
||
sigma_t, sigma_s0 = (
|
||
self.sigmas[self.step_index],
|
||
self.sigmas[self.step_index - 1],
|
||
)
|
||
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
||
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
||
|
||
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
||
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
||
gradient_part = torch.zeros_like(this_sample)
|
||
h = lambda_t - lambda_s0
|
||
lambda_list = []
|
||
for i in range(order):
|
||
si = self.step_index - i
|
||
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
|
||
lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
|
||
lambda_list.append(lambda_si)
|
||
|
||
model_prev_list = model_output_list + [this_model_output]
|
||
|
||
gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau)
|
||
|
||
x = last_sample
|
||
|
||
if self.predict_x0:
|
||
if (
|
||
order == 2
|
||
): ## if order = 2 we do a modification that does not influence the convergence order similar to UniPC. Note: This is used only for few steps sampling.
|
||
# The added term is O(h^3). Empirically we find it will slightly improve the image quality.
|
||
# ODE case
|
||
# gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h)
|
||
# gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h)
|
||
gradient_coefficients[0] += (
|
||
1.0
|
||
* torch.exp((1 + tau**2) * lambda_t)
|
||
* (h / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2 * h))
|
||
)
|
||
gradient_coefficients[1] -= (
|
||
1.0
|
||
* torch.exp((1 + tau**2) * lambda_t)
|
||
* (h / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2 * h))
|
||
)
|
||
|
||
for i in range(order):
|
||
if self.predict_x0:
|
||
gradient_part += (
|
||
(1 + tau**2)
|
||
* sigma_t
|
||
* torch.exp(-(tau**2) * lambda_t)
|
||
* gradient_coefficients[i]
|
||
* model_prev_list[-(i + 1)]
|
||
)
|
||
else:
|
||
gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)]
|
||
|
||
if self.predict_x0:
|
||
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * last_noise
|
||
else:
|
||
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * last_noise
|
||
|
||
if self.predict_x0:
|
||
x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part
|
||
else:
|
||
x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part
|
||
|
||
x_t = x_t.to(x.dtype)
|
||
return x_t
|
||
|
||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||
if schedule_timesteps is None:
|
||
schedule_timesteps = self.timesteps
|
||
|
||
index_candidates = (schedule_timesteps == timestep).nonzero()
|
||
|
||
if len(index_candidates) == 0:
|
||
step_index = len(self.timesteps) - 1
|
||
# The sigma index that is taken for the **very** first `step`
|
||
# is always the second index (or the last index if there is only 1)
|
||
# This way we can ensure we don't accidentally skip a sigma in
|
||
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
||
elif len(index_candidates) > 1:
|
||
step_index = index_candidates[1].item()
|
||
else:
|
||
step_index = index_candidates[0].item()
|
||
|
||
return step_index
|
||
|
||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
|
||
def _init_step_index(self, timestep):
|
||
"""
|
||
Initialize the step_index counter for the scheduler.
|
||
"""
|
||
|
||
if self.begin_index is None:
|
||
if isinstance(timestep, torch.Tensor):
|
||
timestep = timestep.to(self.timesteps.device)
|
||
self._step_index = self.index_for_timestep(timestep)
|
||
else:
|
||
self._step_index = self._begin_index
|
||
|
||
def step(
|
||
self,
|
||
model_output: torch.Tensor,
|
||
timestep: int,
|
||
sample: torch.Tensor,
|
||
generator=None,
|
||
return_dict: bool = True,
|
||
) -> Union[SchedulerOutput, Tuple]:
|
||
"""
|
||
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
|
||
the SA-Solver.
|
||
|
||
Args:
|
||
model_output (`torch.Tensor`):
|
||
The direct output from learned diffusion model.
|
||
timestep (`int`):
|
||
The current discrete timestep in the diffusion chain.
|
||
sample (`torch.Tensor`):
|
||
A current instance of a sample created by the diffusion process.
|
||
generator (`torch.Generator`, *optional*):
|
||
A random number generator.
|
||
return_dict (`bool`):
|
||
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
||
|
||
Returns:
|
||
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
||
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
||
tuple is returned where the first element is the sample tensor.
|
||
|
||
"""
|
||
if self.num_inference_steps is None:
|
||
raise ValueError(
|
||
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
||
)
|
||
|
||
if self.step_index is None:
|
||
self._init_step_index(timestep)
|
||
|
||
use_corrector = self.step_index > 0 and self.last_sample is not None
|
||
|
||
model_output_convert = self.convert_model_output(model_output, sample=sample)
|
||
|
||
if use_corrector:
|
||
current_tau = self.tau_func(self.timestep_list[-1])
|
||
sample = self.stochastic_adams_moulton_update(
|
||
this_model_output=model_output_convert,
|
||
last_sample=self.last_sample,
|
||
last_noise=self.last_noise,
|
||
this_sample=sample,
|
||
order=self.this_corrector_order,
|
||
tau=current_tau,
|
||
)
|
||
|
||
for i in range(max(self.config.predictor_order, self.config.corrector_order - 1) - 1):
|
||
self.model_outputs[i] = self.model_outputs[i + 1]
|
||
self.timestep_list[i] = self.timestep_list[i + 1]
|
||
|
||
self.model_outputs[-1] = model_output_convert
|
||
self.timestep_list[-1] = timestep
|
||
|
||
noise = randn_tensor(
|
||
model_output.shape,
|
||
generator=generator,
|
||
device=model_output.device,
|
||
dtype=model_output.dtype,
|
||
)
|
||
|
||
if self.config.lower_order_final:
|
||
this_predictor_order = min(self.config.predictor_order, len(self.timesteps) - self.step_index)
|
||
this_corrector_order = min(self.config.corrector_order, len(self.timesteps) - self.step_index + 1)
|
||
else:
|
||
this_predictor_order = self.config.predictor_order
|
||
this_corrector_order = self.config.corrector_order
|
||
|
||
self.this_predictor_order = min(this_predictor_order, self.lower_order_nums + 1) # warmup for multistep
|
||
self.this_corrector_order = min(this_corrector_order, self.lower_order_nums + 2) # warmup for multistep
|
||
assert self.this_predictor_order > 0
|
||
assert self.this_corrector_order > 0
|
||
|
||
self.last_sample = sample
|
||
self.last_noise = noise
|
||
|
||
current_tau = self.tau_func(self.timestep_list[-1])
|
||
prev_sample = self.stochastic_adams_bashforth_update(
|
||
model_output=model_output_convert,
|
||
sample=sample,
|
||
noise=noise,
|
||
order=self.this_predictor_order,
|
||
tau=current_tau,
|
||
)
|
||
|
||
if self.lower_order_nums < max(self.config.predictor_order, self.config.corrector_order - 1):
|
||
self.lower_order_nums += 1
|
||
|
||
# upon completion increase step index by one
|
||
self._step_index += 1
|
||
|
||
if not return_dict:
|
||
return (prev_sample,)
|
||
|
||
return SchedulerOutput(prev_sample=prev_sample)
|
||
|
||
def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
||
"""
|
||
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
||
current timestep.
|
||
|
||
Args:
|
||
sample (`torch.Tensor`):
|
||
The input sample.
|
||
|
||
Returns:
|
||
`torch.Tensor`:
|
||
A scaled input sample.
|
||
"""
|
||
return sample
|
||
|
||
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
||
def add_noise(
|
||
self,
|
||
original_samples: torch.Tensor,
|
||
noise: torch.Tensor,
|
||
timesteps: torch.IntTensor,
|
||
) -> torch.Tensor:
|
||
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
||
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
|
||
# for the subsequent add_noise calls
|
||
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
|
||
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
|
||
timesteps = timesteps.to(original_samples.device)
|
||
|
||
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
||
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
||
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
||
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
||
|
||
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
||
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
||
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
||
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
||
|
||
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
||
return noisy_samples
|
||
|
||
def __len__(self):
|
||
return self.config.num_train_timesteps
|