team-10/env/Lib/site-packages/scipy/linalg/_decomp_cossin.py
2025-08-02 07:34:44 +02:00

236 lines
9.4 KiB
Python

from collections.abc import Iterable
import numpy as np
from scipy._lib._util import _asarray_validated, _apply_over_batch
from scipy.linalg import block_diag, LinAlgError
from .lapack import _compute_lwork, get_lapack_funcs
__all__ = ['cossin']
def cossin(X, p=None, q=None, separate=False,
swap_sign=False, compute_u=True, compute_vh=True):
"""
Compute the cosine-sine (CS) decomposition of an orthogonal/unitary matrix.
X is an ``(m, m)`` orthogonal/unitary matrix, partitioned as the following
where upper left block has the shape of ``(p, q)``::
┌ ┐
│ I 0 0 │ 0 0 0 │
┌ ┐ ┌ ┐│ 0 C 0 │ 0 -S 0 │┌ ┐*
│ X11 │ X12 │ │ U1 │ ││ 0 0 0 │ 0 0 -I ││ V1 │ │
│ ────┼──── │ = │────┼────││─────────┼─────────││────┼────│
│ X21 │ X22 │ │ │ U2 ││ 0 0 0 │ I 0 0 ││ │ V2 │
└ ┘ └ ┘│ 0 S 0 │ 0 C 0 │└ ┘
│ 0 0 I │ 0 0 0 │
└ ┘
``U1``, ``U2``, ``V1``, ``V2`` are square orthogonal/unitary matrices of
dimensions ``(p,p)``, ``(m-p,m-p)``, ``(q,q)``, and ``(m-q,m-q)``
respectively, and ``C`` and ``S`` are ``(r, r)`` nonnegative diagonal
matrices satisfying ``C^2 + S^2 = I`` where ``r = min(p, m-p, q, m-q)``.
Moreover, the rank of the identity matrices are ``min(p, q) - r``,
``min(p, m - q) - r``, ``min(m - p, q) - r``, and ``min(m - p, m - q) - r``
respectively.
X can be supplied either by itself and block specifications p, q or its
subblocks in an iterable from which the shapes would be derived. See the
examples below.
Parameters
----------
X : array_like, iterable
complex unitary or real orthogonal matrix to be decomposed, or iterable
of subblocks ``X11``, ``X12``, ``X21``, ``X22``, when ``p``, ``q`` are
omitted.
p : int, optional
Number of rows of the upper left block ``X11``, used only when X is
given as an array.
q : int, optional
Number of columns of the upper left block ``X11``, used only when X is
given as an array.
separate : bool, optional
if ``True``, the low level components are returned instead of the
matrix factors, i.e. ``(u1,u2)``, ``theta``, ``(v1h,v2h)`` instead of
``u``, ``cs``, ``vh``.
swap_sign : bool, optional
if ``True``, the ``-S``, ``-I`` block will be the bottom left,
otherwise (by default) they will be in the upper right block.
compute_u : bool, optional
if ``False``, ``u`` won't be computed and an empty array is returned.
compute_vh : bool, optional
if ``False``, ``vh`` won't be computed and an empty array is returned.
Returns
-------
u : ndarray
When ``compute_u=True``, contains the block diagonal orthogonal/unitary
matrix consisting of the blocks ``U1`` (``p`` x ``p``) and ``U2``
(``m-p`` x ``m-p``) orthogonal/unitary matrices. If ``separate=True``,
this contains the tuple of ``(U1, U2)``.
cs : ndarray
The cosine-sine factor with the structure described above.
If ``separate=True``, this contains the ``theta`` array containing the
angles in radians.
vh : ndarray
When ``compute_vh=True`, contains the block diagonal orthogonal/unitary
matrix consisting of the blocks ``V1H`` (``q`` x ``q``) and ``V2H``
(``m-q`` x ``m-q``) orthogonal/unitary matrices. If ``separate=True``,
this contains the tuple of ``(V1H, V2H)``.
Notes
-----
The documentation is written assuming array arguments are of specified
"core" shapes. However, array argument(s) of this function may have additional
"batch" dimensions prepended to the core shape. In this case, the array is treated
as a batch of lower-dimensional slices; see :ref:`linalg_batch` for details.
References
----------
.. [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
Algorithms, 50(1):33-65, 2009.
Examples
--------
>>> import numpy as np
>>> from scipy.linalg import cossin
>>> from scipy.stats import unitary_group
>>> x = unitary_group.rvs(4)
>>> u, cs, vdh = cossin(x, p=2, q=2)
>>> np.allclose(x, u @ cs @ vdh)
True
Same can be entered via subblocks without the need of ``p`` and ``q``. Also
let's skip the computation of ``u``
>>> ue, cs, vdh = cossin((x[:2, :2], x[:2, 2:], x[2:, :2], x[2:, 2:]),
... compute_u=False)
>>> print(ue)
[]
>>> np.allclose(x, u @ cs @ vdh)
True
"""
if p or q:
p = 1 if p is None else int(p)
q = 1 if q is None else int(q)
X = _asarray_validated(X, check_finite=True)
if not np.equal(*X.shape[-2:]):
raise ValueError("Cosine Sine decomposition only supports square"
f" matrices, got {X.shape[-2:]}")
m = X.shape[-2]
if p >= m or p <= 0:
raise ValueError(f"invalid p={p}, 0<p<{X.shape[-2]} must hold")
if q >= m or q <= 0:
raise ValueError(f"invalid q={q}, 0<q<{X.shape[-2]} must hold")
x11, x12, x21, x22 = (X[..., :p, :q], X[..., :p, q:],
X[..., p:, :q], X[..., p:, q:])
elif not isinstance(X, Iterable):
raise ValueError("When p and q are None, X must be an Iterable"
" containing the subblocks of X")
else:
if len(X) != 4:
raise ValueError("When p and q are None, exactly four arrays"
f" should be in X, got {len(X)}")
x11, x12, x21, x22 = (np.atleast_2d(x) for x in X)
return _cossin(x11, x12, x21, x22, separate=separate, swap_sign=swap_sign,
compute_u=compute_u, compute_vh=compute_vh)
@_apply_over_batch(('x11', 2), ('x12', 2), ('x21', 2), ('x22', 2))
def _cossin(x11, x12, x21, x22, separate, swap_sign, compute_u, compute_vh):
for name, block in zip(["x11", "x12", "x21", "x22"],
[x11, x12, x21, x22]):
if block.shape[1] == 0:
raise ValueError(f"{name} can't be empty")
p, q = x11.shape
mmp, mmq = x22.shape
if x12.shape != (p, mmq):
raise ValueError(f"Invalid x12 dimensions: desired {(p, mmq)}, "
f"got {x12.shape}")
if x21.shape != (mmp, q):
raise ValueError(f"Invalid x21 dimensions: desired {(mmp, q)}, "
f"got {x21.shape}")
if p + mmp != q + mmq:
raise ValueError("The subblocks have compatible sizes but "
"don't form a square array (instead they form a"
f" {p + mmp}x{q + mmq} array). This might be "
"due to missing p, q arguments.")
m = p + mmp
cplx = any([np.iscomplexobj(x) for x in [x11, x12, x21, x22]])
driver = "uncsd" if cplx else "orcsd"
csd, csd_lwork = get_lapack_funcs([driver, driver + "_lwork"],
[x11, x12, x21, x22])
lwork = _compute_lwork(csd_lwork, m=m, p=p, q=q)
lwork_args = ({'lwork': lwork[0], 'lrwork': lwork[1]} if cplx else
{'lwork': lwork})
*_, theta, u1, u2, v1h, v2h, info = csd(x11=x11, x12=x12, x21=x21, x22=x22,
compute_u1=compute_u,
compute_u2=compute_u,
compute_v1t=compute_vh,
compute_v2t=compute_vh,
trans=False, signs=swap_sign,
**lwork_args)
method_name = csd.typecode + driver
if info < 0:
raise ValueError(f'illegal value in argument {-info} '
f'of internal {method_name}')
if info > 0:
raise LinAlgError(f"{method_name} did not converge: {info}")
if separate:
return (u1, u2), theta, (v1h, v2h)
U = block_diag(u1, u2)
VDH = block_diag(v1h, v2h)
# Construct the middle factor CS
c = np.diag(np.cos(theta))
s = np.diag(np.sin(theta))
r = min(p, q, m - p, m - q)
n11 = min(p, q) - r
n12 = min(p, m - q) - r
n21 = min(m - p, q) - r
n22 = min(m - p, m - q) - r
Id = np.eye(np.max([n11, n12, n21, n22, r]), dtype=theta.dtype)
CS = np.zeros((m, m), dtype=theta.dtype)
CS[:n11, :n11] = Id[:n11, :n11]
xs = n11 + r
xe = n11 + r + n12
ys = n11 + n21 + n22 + 2 * r
ye = n11 + n21 + n22 + 2 * r + n12
CS[xs: xe, ys:ye] = Id[:n12, :n12] if swap_sign else -Id[:n12, :n12]
xs = p + n22 + r
xe = p + n22 + r + + n21
ys = n11 + r
ye = n11 + r + n21
CS[xs:xe, ys:ye] = -Id[:n21, :n21] if swap_sign else Id[:n21, :n21]
CS[p:p + n22, q:q + n22] = Id[:n22, :n22]
CS[n11:n11 + r, n11:n11 + r] = c
CS[p + n22:p + n22 + r, n11 + r + n21 + n22:2 * r + n11 + n21 + n22] = c
xs = n11
xe = n11 + r
ys = n11 + n21 + n22 + r
ye = n11 + n21 + n22 + 2 * r
CS[xs:xe, ys:ye] = s if swap_sign else -s
CS[p + n22:p + n22 + r, n11:n11 + r] = -s if swap_sign else s
return U, CS, VDH