team-10/env/Lib/site-packages/torch/include/ATen/cuda/cub.cuh
2025-08-02 07:34:44 +02:00

626 lines
22 KiB
Text

#pragma once
#include <ATen/cuda/cub.h>
#include <cstddef>
#include <type_traits>
#include <iterator>
#include <limits>
#include <ATen/cuda/cub_definitions.cuh>
#include <ATen/cuda/CUDAContextLight.h>
#if USE_GLOBAL_CUB_WRAPPED_NAMESPACE()
#include <cub/cub.cuh>
#else
// include cub in a safe manner, see:
// https://github.com/pytorch/pytorch/pull/55292
#undef CUB_NS_POSTFIX //undef to avoid redefinition warnings
#undef CUB_NS_PREFIX
#undef CUB_NS_QUALIFIER
#define CUB_NS_PREFIX namespace at_cuda_detail {
#define CUB_NS_POSTFIX }
#define CUB_NS_QUALIFIER ::at_cuda_detail::cub
#include <cub/cub.cuh>
#undef CUB_NS_POSTFIX
#undef CUB_NS_PREFIX
#undef CUB_NS_QUALIFIER
#endif
#include <ATen/cuda/Exceptions.h>
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/cuda/CUDAStream.h>
// handle the temporary storage and 'twice' calls for cub API
#define CUB_WRAPPER(func, ...) do { \
size_t temp_storage_bytes = 0; \
func(nullptr, temp_storage_bytes, __VA_ARGS__); \
auto& caching_allocator = *::c10::cuda::CUDACachingAllocator::get(); \
auto temp_storage = caching_allocator.allocate(temp_storage_bytes); \
func(temp_storage.get(), temp_storage_bytes, __VA_ARGS__); \
AT_CUDA_CHECK(cudaGetLastError()); \
} while (false)
#ifdef USE_ROCM
#define NO_ROCM(x)
#define ROCM_HIPCUB(x) ::hipcub
#else
#define NO_ROCM(x) x
#define ROCM_HIPCUB(x) x
#endif
#if (!defined(USE_ROCM) && !CUB_SUPPORTS_NV_BFLOAT16()) || defined(USE_ROCM)
#if !defined(USE_ROCM)
namespace at_cuda_detail {
#endif
// backport https://github.com/NVIDIA/cub/pull/306 for c10::BFloat16
template <>
struct ROCM_HIPCUB(cub)::FpLimits<c10::BFloat16>
{
static __host__ __device__ __forceinline__ c10::BFloat16 Max() {
unsigned short max_word = 0x7F7F;
return reinterpret_cast<c10::BFloat16&>(max_word);
}
static __host__ __device__ __forceinline__ c10::BFloat16 Lowest() {
unsigned short lowest_word = 0xFF7F;
return reinterpret_cast<c10::BFloat16&>(lowest_word);
}
};
template <>
struct ROCM_HIPCUB(cub)::NumericTraits<c10::BFloat16>:
ROCM_HIPCUB(cub)::BaseTraits<ROCM_HIPCUB(cub)::FLOATING_POINT, true, false, unsigned short, c10::BFloat16> {};
#if !defined(USE_ROCM)
} // namespace at_cuda_detail
#endif
#endif
#if !defined(USE_ROCM)
namespace at::native {
namespace cub = ::at_cuda_detail::cub;
} // namespace at::native
#endif
namespace at::cuda::cub {
namespace detail {
template<typename T>
struct cuda_type {
using type = T;
};
template<>
struct cuda_type<c10::Half> {
using type = __half;
};
#if !defined(USE_ROCM) && CUB_SUPPORTS_NV_BFLOAT16()
template<>
struct cuda_type<c10::BFloat16> {
using type = __nv_bfloat16;
};
#elif defined(USE_ROCM)
template<>
struct cuda_type<c10::BFloat16> {
using type = hip_bfloat16;
};
#endif
} // namespace detail
template<typename key_t, typename value_t, typename OffsetIteratorT>
inline void segmented_sort_pairs(
const key_t *keys_in, key_t *keys_out,
const value_t *values_in, value_t *values_out,
int64_t num_elements, int64_t num_segments,
OffsetIteratorT begin_offsets, OffsetIteratorT end_offsets,
bool descending=false, int64_t begin_bit=0, int64_t end_bit=sizeof(key_t)*8
) {
TORCH_CHECK(num_elements <= std::numeric_limits<int>::max(),
"cub sort does not support sorting more than INT_MAX elements");
TORCH_CHECK(num_segments <= std::numeric_limits<int>::max(),
"cub sort does not support sorting more than INT_MAX elements");
using key_t_ = typename detail::cuda_type<key_t>::type;
auto allocator = c10::cuda::CUDACachingAllocator::get();
c10::DataPtr keys_out_owner;
if (keys_out == nullptr) {
keys_out_owner = allocator->allocate(num_elements * sizeof(key_t));
keys_out = reinterpret_cast<key_t *>(keys_out_owner.get());
}
const key_t_ *keys_in_ = reinterpret_cast<const key_t_*>(keys_in);
key_t_ *keys_out_ = reinterpret_cast<key_t_*>(keys_out);
if (descending) {
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSegmentedRadixSort::SortPairsDescending,
keys_in_, keys_out_, values_in, values_out,
num_elements, num_segments, begin_offsets, end_offsets,
begin_bit, end_bit, c10::cuda::getCurrentCUDAStream());
} else {
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSegmentedRadixSort::SortPairs,
keys_in_, keys_out_, values_in, values_out,
num_elements, num_segments, begin_offsets, end_offsets,
begin_bit, end_bit, c10::cuda::getCurrentCUDAStream());
}
}
#if CUB_SUPPORTS_UNIQUE_BY_KEY()
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT, typename NumSelectedIteratorT>
inline void unique_by_key(
KeysInputIteratorT keys_in, ValuesInputIteratorT values_in,
ValuesOutputIteratorT values_out,
NumSelectedIteratorT num_selected, int64_t num_input_items)
{
// TODO: use thrust::discard_iterator to handle null keys_out when https://github.com/NVIDIA/cub/issues/406 is fixed.
using KeyT = typename std::iterator_traits<KeysInputIteratorT>::value_type;
auto allocator = c10::cuda::CUDACachingAllocator::get();
c10::DataPtr keys_out_owner;
keys_out_owner = allocator->allocate(num_input_items * sizeof(KeyT));
auto keys_out_ = static_cast<KeyT *>(keys_out_owner.get());
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSelect::UniqueByKey,
keys_in, values_in, keys_out_, values_out, num_selected, num_input_items, c10::cuda::getCurrentCUDAStream());
}
#endif
namespace impl {
template<typename InputIteratorT1, typename InputIteratorT2, typename OutputIteratorT, class ScanOpT>
C10_LAUNCH_BOUNDS_1(1)
__global__ void transform_vals(InputIteratorT1 a, InputIteratorT2 b, OutputIteratorT out, ScanOpT scan_op){
// NOTE: out here not the final scan output, but an intermediate of the accumulation type.
using acc_t = typename std::iterator_traits<OutputIteratorT>::value_type;
*out = scan_op(static_cast<acc_t>(*a), static_cast<acc_t>(*b));
}
#if !CUB_SUPPORTS_FUTURE_VALUE()
template<typename ValueT, typename InputIteratorT>
struct chained_iterator {
using iterator_category = std::random_access_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = ValueT;
using pointer = ValueT*;
using reference = ValueT&;
InputIteratorT iter;
ValueT *first;
difference_type offset = 0;
__device__ ValueT operator[](difference_type i) {
i += offset;
if (i == 0) {
return *first;
} else {
return ValueT(iter[i - 1]);
}
}
__device__ chained_iterator operator+(difference_type i) {
return chained_iterator{iter, first, i};
}
__device__ ValueT operator*() {
return (*this)[0];
}
};
#endif
// even though cub is supposed to support tensors with int_max elements, in reality it doesn't,
// so split at int_max/2
constexpr int max_cub_size = std::numeric_limits<int>::max() / 2 + 1; // 2**30
}
// non synchronizing cub call
// even though cub is supposed to support tensors with int_max elements, in reality it doesn't,
// so split at int_max/2
template<typename InputIteratorT, typename OutputIteratorT, typename ScanOpT, int max_cub_size=impl::max_cub_size>
inline void inclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT scan_op, int64_t num_items) {
#if defined(USE_ROCM)
//For ROCm, use hipCUB chained iterators
CUB_WRAPPER(NO_ROCM(detail)::hipcub::DeviceScan::InclusiveScan,
input,
output,
scan_op,
num_items,
at::cuda::getCurrentCUDAStream());
C10_HIP_KERNEL_LAUNCH_CHECK();
#else
// non synchronizing cub call
// even though cub is supposed to support tensors with int_max elements, in reality it doesn't,
// so split at int_max/2
int size_cub = std::min<int64_t>(num_items, max_cub_size);
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
input,
output,
scan_op,
size_cub,
at::cuda::getCurrentCUDAStream());
C10_CUDA_KERNEL_LAUNCH_CHECK();
using input_t = typename std::iterator_traits<InputIteratorT>::value_type;
for (int64_t i = max_cub_size; i < num_items; i += max_cub_size) {
auto allocator = c10::cuda::CUDACachingAllocator::get();
c10::DataPtr first_elem = allocator->allocate(sizeof(input_t));
auto first_elem_ptr = reinterpret_cast<input_t *>(first_elem.get());
size_cub = std::min<int64_t>(num_items - i, max_cub_size);
impl::transform_vals<<<1, 1, 0, at::cuda::getCurrentCUDAStream()>>>(
output + i - 1,
input + i,
first_elem_ptr,
scan_op);
C10_CUDA_KERNEL_LAUNCH_CHECK();
#if !CUB_SUPPORTS_FUTURE_VALUE()
using ArgIndexInputIterator = NO_ROCM(at_cuda_detail)::cub::ArgIndexInputIterator<InputIteratorT>;
using tuple = typename ArgIndexInputIterator::value_type;
auto input_iter_transform = [=] __device__ (const tuple &x)->input_t {
if (x.key == 0) {
return *first_elem_ptr;
} else {
return x.value;
}
};
auto input_ = NO_ROCM(at_cuda_detail)::cub::TransformInputIterator<input_t, decltype(input_iter_transform), ArgIndexInputIterator>(
ArgIndexInputIterator(input + i), input_iter_transform);
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
input_,
output + i,
scan_op,
size_cub,
at::cuda::getCurrentCUDAStream());
#else
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
input + i + 1,
output + i,
scan_op,
::at_cuda_detail::cub::FutureValue<input_t>(first_elem_ptr),
size_cub,
at::cuda::getCurrentCUDAStream());
#endif
}
#endif
}
# if (defined(CUDA_VERSION) && CUDA_VERSION > 11040) || defined(USE_ROCM)
template<typename T>
struct BlockPrefixCallbackOp
{
public:
T running_total;
__host__ __device__ BlockPrefixCallbackOp(T running_total) : running_total(running_total) {}
// Callback operator to be entered by the first warp of threads in the block.
// Thread-0 is responsible for returning a value for seeding the block-wide scan.
__host__ __device__ T operator()(T block_aggregate)
{
T old_prefix = running_total;
running_total += block_aggregate;
return old_prefix;
}
};
template<int BLOCK_THREADS, int ITEMS_PER_THREAD, typename T>
__global__ void final_scan_kernel(const T* d_in, T* d_out, T* agg, int64_t nelem, int iters_per_cta) {
int64_t offset = BLOCK_THREADS * ITEMS_PER_THREAD * iters_per_cta * (int64_t)blockIdx.x;
int64_t remaining = nelem - offset;
if (remaining <= 0) {
return;
}
d_in += offset;
d_out += offset;
using BlockLoadT = ROCM_HIPCUB(at_cuda_detail::cub)::BlockLoad<T, BLOCK_THREADS, ITEMS_PER_THREAD, ROCM_HIPCUB(at_cuda_detail::cub)::BLOCK_LOAD_WARP_TRANSPOSE>;
// Specialize BlockStore type for our thread block (uses warp-striped loads for coalescing, then transposes in shared
// memory to a blocked arrangement)
using BlockStoreT = ROCM_HIPCUB(at_cuda_detail::cub)::BlockStore<T, BLOCK_THREADS, ITEMS_PER_THREAD, ROCM_HIPCUB(at_cuda_detail::cub)::BLOCK_STORE_WARP_TRANSPOSE>;
// Specialize BlockScan type for our thread block
using BlockScanT = ROCM_HIPCUB(at_cuda_detail::cub)::BlockScan<T, BLOCK_THREADS, ROCM_HIPCUB(at_cuda_detail::cub)::BLOCK_SCAN_WARP_SCANS>;
using BlockReduceT = ROCM_HIPCUB(at_cuda_detail::cub)::BlockReduce<T, BLOCK_THREADS>;
// Shared memory
__shared__ union TempStorage
{
typename BlockLoadT::TempStorage load;
typename BlockStoreT::TempStorage store;
typename BlockScanT::TempStorage scan;
typename BlockReduceT::TempStorage reduce;
} temp_storage;
// load agg and reduce my starting value
T agg_data;
agg_data = threadIdx.x >= blockIdx.x ? T(0) : agg[threadIdx.x];
// if there are fewer threads than previous values to be read,
// read another value
if (threadIdx.x + blockDim.x < blockIdx.x) {
agg_data += agg[threadIdx.x + blockDim.x];
}
T aggregate = BlockReduceT(temp_storage.reduce).Sum(agg_data);
__syncthreads();
BlockPrefixCallbackOp prefix_op(aggregate);
// Per-thread tile data
T data[ITEMS_PER_THREAD];
for (int i=0; i<iters_per_cta; i++){
// Load items into a blocked arrangement
if (remaining >= BLOCK_THREADS * ITEMS_PER_THREAD) {
BlockLoadT(temp_storage.load).Load(d_in, data);
} else {
#pragma unroll
for (int j=0; j<ITEMS_PER_THREAD; j++) {
data[j] = 0;
}
BlockLoadT(temp_storage.load).Load(d_in, data, remaining);
}
// Barrier for smem reuse
__syncthreads();
// Compute inclusive prefix sum
BlockScanT(temp_storage.scan).InclusiveSum(data, data, prefix_op);
// Barrier for smem reuse
__syncthreads();
// Store items from a blocked arrangement
if (remaining >= BLOCK_THREADS * ITEMS_PER_THREAD) {
BlockStoreT(temp_storage.store).Store(d_out, data);
} else {
BlockStoreT(temp_storage.store).Store(d_out, data, remaining);
}
d_in += BLOCK_THREADS * ITEMS_PER_THREAD;
d_out += BLOCK_THREADS * ITEMS_PER_THREAD;
remaining -= BLOCK_THREADS * ITEMS_PER_THREAD;
if (remaining <= 0) return;
__syncthreads();
}
}
template <typename T, typename aggT, bool nonzero>
struct TransformFunctor {
__device__ aggT operator()(T value) const {
if constexpr (!nonzero) {
return value;
} else {
return (value != T(0)) ? 1 : 0;
}
}
};
template<int BLOCK_THREADS, int ITEMS_PER_THREAD, bool nonzero, typename T, typename aggT>
__global__ void calc_block_sums(const T * d_in, aggT * agg, int64_t nelem, int iters_per_cta){
int64_t offset = BLOCK_THREADS * ITEMS_PER_THREAD * iters_per_cta * (int64_t)blockIdx.x;
int64_t remaining = nelem - offset;
if (remaining <= 0) {
return;
}
d_in += offset;
using BlockLoadT = ROCM_HIPCUB(at_cuda_detail::cub)::BlockLoad<aggT, BLOCK_THREADS, ITEMS_PER_THREAD, ROCM_HIPCUB(at_cuda_detail::cub)::BLOCK_LOAD_STRIPED>;
using BlockReduceT = ROCM_HIPCUB(at_cuda_detail::cub)::BlockReduce<aggT, BLOCK_THREADS>;
// Shared memory
__shared__ union TempStorage
{
typename BlockLoadT::TempStorage load;
typename BlockReduceT::TempStorage reduce;
} temp_storage;
aggT data[ITEMS_PER_THREAD];
aggT agg_val = 0;
TransformFunctor<T, aggT, nonzero> transform_functor;
auto iter_in = ROCM_HIPCUB(at_cuda_detail::cub)::TransformInputIterator<aggT, TransformFunctor<T, aggT, nonzero>, const T*>(d_in, transform_functor);
for (int i=0; i<iters_per_cta; i++){
if (remaining >= BLOCK_THREADS * ITEMS_PER_THREAD) {
BlockLoadT(temp_storage.load).Load(iter_in, data);
__syncthreads();
agg_val += BlockReduceT(temp_storage.reduce).Sum(data);
} else {
BlockLoadT(temp_storage.load).Load(iter_in, data, remaining, aggT(0));
__syncthreads();
agg_val += BlockReduceT(temp_storage.reduce).Sum(data);
}
iter_in += BLOCK_THREADS * ITEMS_PER_THREAD;
remaining -= BLOCK_THREADS * ITEMS_PER_THREAD;
if (remaining <= 0) {
// for nonzeros we need to write out last blocks
// accumulated value to be able to compute
// total number of nonzeros
if (nonzero && threadIdx.x == 0) {
agg[blockIdx.x] = agg_val;
}
return;
}
__syncthreads();
}
if (threadIdx.x == 0) {
agg[blockIdx.x] = agg_val;
}
}
template <typename T>
struct NonZeroOp {
__host__ __device__ __forceinline__ int operator()(const T& a) const {
return (a != T(0));
}
};
template<int size>
constexpr int block_threads(){
if constexpr (size >=16) {
return 128;
} else if constexpr (size >=8) {
return 256;
} else {
return 512;
}
}
template<typename scalar_t, typename ScanOpT>
inline void inclusive_deterministic_scan(const scalar_t * input, scalar_t * output, ScanOpT scan_op, int64_t num_items) {
static_assert(std::is_same_v<ScanOpT, std::plus<scalar_t>>, "");
constexpr int BLOCK_THREADS = block_threads<sizeof(scalar_t)>();
constexpr int ITEMS_PER_THREAD = 16;
auto grid_size = (num_items + BLOCK_THREADS * ITEMS_PER_THREAD - 1) / (BLOCK_THREADS * ITEMS_PER_THREAD);
const int64_t num_sms = at::cuda::getCurrentDeviceProperties()->multiProcessorCount;
const int iters_per_cta = (grid_size + num_sms - 1)/num_sms;
grid_size = std::min(num_sms, grid_size);
// simple reduction in scan kernel handles at most 2 items per thread
TORCH_INTERNAL_ASSERT(2 * BLOCK_THREADS >= grid_size);
auto& allocator = *c10::cuda::CUDACachingAllocator::get();
auto agg = allocator.allocate(grid_size * sizeof(scalar_t));
calc_block_sums<BLOCK_THREADS, ITEMS_PER_THREAD, false>
<<<grid_size, BLOCK_THREADS, 0, at::cuda::getCurrentCUDAStream()>>>(
input, (scalar_t*)agg.get(), num_items, iters_per_cta);
C10_CUDA_KERNEL_LAUNCH_CHECK();
final_scan_kernel<BLOCK_THREADS, ITEMS_PER_THREAD>
<<<grid_size, BLOCK_THREADS, 0, at::cuda::getCurrentCUDAStream()>>>(
input, output, (scalar_t*)agg.get(), num_items, iters_per_cta);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
#endif
template<typename InputIteratorT, typename OutputIteratorT, typename ScanOpT, typename InitValueT, int max_cub_size=impl::max_cub_size>
inline void exclusive_scan(InputIteratorT input, OutputIteratorT output, ScanOpT scan_op, InitValueT init_value, int64_t num_items) {
#if defined(USE_ROCM)
//For ROCm, use hipCUB chained iterators
CUB_WRAPPER(NO_ROCM(detail)::hipcub::DeviceScan::ExclusiveScan,
input,
output,
scan_op,
init_value,
num_items,
at::cuda::getCurrentCUDAStream());
C10_HIP_KERNEL_LAUNCH_CHECK();
#else
// non synchronizing cub call
// even though cub is supposed to support tensors with int_max elements, in reality it doesn't,
// so split at int_max/2
int size_cub = std::min<int64_t>(num_items, max_cub_size);
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
input,
output,
scan_op,
init_value,
size_cub,
at::cuda::getCurrentCUDAStream());
C10_CUDA_KERNEL_LAUNCH_CHECK();
for (int64_t i = max_cub_size; i < num_items; i += max_cub_size) {
auto allocator = c10::cuda::CUDACachingAllocator::get();
c10::DataPtr first_elem = allocator->allocate(sizeof(InitValueT));
auto first_elem_ptr = reinterpret_cast<InitValueT *>(first_elem.get());
size_cub = std::min<int64_t>(num_items - i, max_cub_size);
impl::transform_vals<<<1, 1, 0, at::cuda::getCurrentCUDAStream()>>>(
output + i - 1,
input + i - 1,
first_elem_ptr,
scan_op);
C10_CUDA_KERNEL_LAUNCH_CHECK();
#if !CUB_SUPPORTS_FUTURE_VALUE()
auto input_ = impl::chained_iterator<InitValueT, InputIteratorT>{
input + i, first_elem_ptr};
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::InclusiveScan,
input_,
output + i,
scan_op,
size_cub,
at::cuda::getCurrentCUDAStream());
#else
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceScan::ExclusiveScan,
input + i,
output + i,
scan_op,
::at_cuda_detail::cub::FutureValue<InitValueT>(first_elem_ptr),
size_cub,
at::cuda::getCurrentCUDAStream());
#endif
}
#endif
}
#if CUB_SUPPORTS_SCAN_BY_KEY()
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT>
inline void inclusive_sum_by_key(KeysInputIteratorT keys, ValuesInputIteratorT input, ValuesOutputIteratorT output, int64_t num_items) {
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(),
"cub InclusiveSumByKey does not support more than INT_MAX elements");
#if !defined(USE_ROCM)
CUB_WRAPPER(at_cuda_detail::cub::DeviceScan::InclusiveSumByKey,
keys, input, output, num_items, at_cuda_detail::cub::Equality(), at::cuda::getCurrentCUDAStream());
#else
CUB_WRAPPER(cub::DeviceScan::InclusiveSumByKey,
keys, input, output, num_items, hipcub::Equality(), at::cuda::getCurrentCUDAStream());
#endif
}
template <typename KeysInputIteratorT, typename ValuesInputIteratorT, typename ValuesOutputIteratorT, typename ScanOpT>
inline void inclusive_scan_by_key(KeysInputIteratorT keys, ValuesInputIteratorT input, ValuesOutputIteratorT output, ScanOpT scan_op, int64_t num_items) {
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(),
"cub InclusiveSumByKey does not support more than INT_MAX elements");
#if !defined(USE_ROCM)
CUB_WRAPPER(at_cuda_detail::cub::DeviceScan::InclusiveScanByKey,
keys, input, output, scan_op, num_items, at_cuda_detail::cub::Equality(), at::cuda::getCurrentCUDAStream());
#else
CUB_WRAPPER(cub::DeviceScan::InclusiveScanByKey,
keys, input, output, scan_op, num_items, hipcub::Equality(), at::cuda::getCurrentCUDAStream());
#endif
}
#endif
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT>
void unique(InputIteratorT input, OutputIteratorT output,
NumSelectedIteratorT num_selected_out, int64_t num_items) {
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(),
"cub unique does not support more than INT_MAX elements");
CUB_WRAPPER(NO_ROCM(at_cuda_detail)::cub::DeviceSelect::Unique,
input, output, num_selected_out, num_items, at::cuda::getCurrentCUDAStream());
}
template <typename InputIteratorT, typename OutputIteratorT, typename CountsOutputIteratorT,
typename LengthOutputIteratorT>
void run_length_encode(InputIteratorT input, OutputIteratorT output, CountsOutputIteratorT counts_out,
LengthOutputIteratorT length_out, int64_t num_items) {
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(),
"cub run_length_encode does not support more than INT_MAX elements");
CUB_WRAPPER(
NO_ROCM(at_cuda_detail)::cub::DeviceRunLengthEncode::Encode,
input, output, counts_out, length_out, num_items,
at::cuda::getCurrentCUDAStream());
}
template <typename InputIteratorT, typename OutputIteratorT, typename ReductionOpT, typename T>
void reduce(InputIteratorT input, OutputIteratorT output, int64_t num_items, ReductionOpT op, T init) {
TORCH_CHECK(num_items <= std::numeric_limits<int>::max(),
"cub reduce does not support more than INT_MAX elements");
CUB_WRAPPER(
NO_ROCM(at_cuda_detail)::cub::DeviceReduce::Reduce,
input, output, num_items, op, init,
at::cuda::getCurrentCUDAStream());
}
} // namespace at::cuda::cub