213 lines
7.6 KiB
Python
213 lines
7.6 KiB
Python
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
from collections.abc import Mapping
|
|
from typing import Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from safetensors import safe_open
|
|
|
|
|
|
def offload_weight(weight, weight_name, offload_folder, index=None):
|
|
dtype = None
|
|
# Check the string instead of the dtype to be compatible with versions of PyTorch that don't have bfloat16.
|
|
if str(weight.dtype) == "torch.bfloat16":
|
|
# Need to reinterpret the underlined data as int16 since NumPy does not handle bfloat16s.
|
|
weight = weight.view(torch.int16)
|
|
dtype = "bfloat16"
|
|
array = weight.cpu().numpy()
|
|
tensor_file = os.path.join(offload_folder, f"{weight_name}.dat")
|
|
if index is not None:
|
|
if dtype is None:
|
|
dtype = str(array.dtype)
|
|
index[weight_name] = {"dtype": dtype, "shape": list(array.shape)}
|
|
if array.ndim == 0:
|
|
array = array[None]
|
|
file_array = np.memmap(tensor_file, dtype=array.dtype, mode="w+", shape=array.shape)
|
|
file_array[:] = array[:]
|
|
file_array.flush()
|
|
return index
|
|
|
|
|
|
def load_offloaded_weight(weight_file, weight_info):
|
|
shape = tuple(weight_info["shape"])
|
|
if shape == ():
|
|
# NumPy memory-mapped arrays can't have 0 dims so it was saved as 1d tensor
|
|
shape = (1,)
|
|
|
|
dtype = weight_info["dtype"]
|
|
if dtype == "bfloat16":
|
|
# NumPy does not support bfloat16 so this was saved as a int16
|
|
dtype = "int16"
|
|
|
|
weight = np.memmap(weight_file, dtype=dtype, shape=shape, mode="r")
|
|
|
|
if len(weight_info["shape"]) == 0:
|
|
weight = weight[0]
|
|
weight = torch.tensor(weight)
|
|
if weight_info["dtype"] == "bfloat16":
|
|
weight = weight.view(torch.bfloat16)
|
|
|
|
return weight
|
|
|
|
|
|
def save_offload_index(index, offload_folder):
|
|
if index is None or len(index) == 0:
|
|
# Nothing to save
|
|
return
|
|
|
|
offload_index_file = os.path.join(offload_folder, "index.json")
|
|
if os.path.isfile(offload_index_file):
|
|
with open(offload_index_file, encoding="utf-8") as f:
|
|
current_index = json.load(f)
|
|
else:
|
|
current_index = {}
|
|
current_index.update(index)
|
|
|
|
with open(offload_index_file, "w", encoding="utf-8") as f:
|
|
json.dump(current_index, f, indent=2)
|
|
|
|
|
|
def offload_state_dict(save_dir: Union[str, os.PathLike], state_dict: dict[str, torch.Tensor]):
|
|
"""
|
|
Offload a state dict in a given folder.
|
|
|
|
Args:
|
|
save_dir (`str` or `os.PathLike`):
|
|
The directory in which to offload the state dict.
|
|
state_dict (`Dict[str, torch.Tensor]`):
|
|
The dictionary of tensors to offload.
|
|
"""
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
index = {}
|
|
for name, parameter in state_dict.items():
|
|
index = offload_weight(parameter, name, save_dir, index=index)
|
|
|
|
# Update index
|
|
save_offload_index(index, save_dir)
|
|
|
|
|
|
class PrefixedDataset(Mapping):
|
|
"""
|
|
Will access keys in a given dataset by adding a prefix.
|
|
|
|
Args:
|
|
dataset (`Mapping`): Any map with string keys.
|
|
prefix (`str`): A prefix to add when trying to access any element in the underlying dataset.
|
|
"""
|
|
|
|
def __init__(self, dataset: Mapping, prefix: str):
|
|
self.dataset = dataset
|
|
self.prefix = prefix
|
|
|
|
def __getitem__(self, key):
|
|
return self.dataset[f"{self.prefix}{key}"]
|
|
|
|
def __iter__(self):
|
|
return iter([key for key in self.dataset if key.startswith(self.prefix)])
|
|
|
|
def __len__(self):
|
|
return len(self.dataset)
|
|
|
|
|
|
class OffloadedWeightsLoader(Mapping):
|
|
"""
|
|
A collection that loads weights stored in a given state dict or memory-mapped on disk.
|
|
|
|
Args:
|
|
state_dict (`Dict[str, torch.Tensor]`, *optional*):
|
|
A dictionary parameter name to tensor.
|
|
save_folder (`str` or `os.PathLike`, *optional*):
|
|
The directory in which the weights are stored (by `offload_state_dict` for instance).
|
|
index (`Dict`, *optional*):
|
|
A dictionary from weight name to their information (`dtype`/ `shape` or safetensors filename). Will default
|
|
to the index saved in `save_folder`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
state_dict: dict[str, torch.Tensor] = None,
|
|
save_folder: Optional[Union[str, os.PathLike]] = None,
|
|
index: Mapping = None,
|
|
device=None,
|
|
):
|
|
if state_dict is None and save_folder is None and index is None:
|
|
raise ValueError("Need either a `state_dict`, a `save_folder` or an `index` containing offloaded weights.")
|
|
|
|
self.state_dict = {} if state_dict is None else state_dict
|
|
self.save_folder = save_folder
|
|
if index is None and save_folder is not None:
|
|
with open(os.path.join(save_folder, "index.json")) as f:
|
|
index = json.load(f)
|
|
self.index = {} if index is None else index
|
|
self.all_keys = list(self.state_dict.keys())
|
|
self.all_keys.extend([key for key in self.index if key not in self.all_keys])
|
|
self.device = device
|
|
|
|
def __getitem__(self, key: str):
|
|
# State dict gets priority
|
|
if key in self.state_dict:
|
|
return self.state_dict[key]
|
|
weight_info = self.index[key]
|
|
if weight_info.get("safetensors_file") is not None:
|
|
device = "cpu" if self.device is None else self.device
|
|
tensor = None
|
|
try:
|
|
with safe_open(weight_info["safetensors_file"], framework="pt", device=device) as f:
|
|
tensor = f.get_tensor(weight_info.get("weight_name", key))
|
|
except TypeError:
|
|
# if failed to get_tensor on the device, such as bf16 on mps, try to load it on CPU first
|
|
with safe_open(weight_info["safetensors_file"], framework="pt", device="cpu") as f:
|
|
tensor = f.get_tensor(weight_info.get("weight_name", key))
|
|
|
|
if "dtype" in weight_info:
|
|
tensor = tensor.to(getattr(torch, weight_info["dtype"]))
|
|
|
|
if tensor.device != torch.device(device):
|
|
tensor = tensor.to(device)
|
|
return tensor
|
|
|
|
weight_file = os.path.join(self.save_folder, f"{key}.dat")
|
|
return load_offloaded_weight(weight_file, weight_info)
|
|
|
|
def __iter__(self):
|
|
return iter(self.all_keys)
|
|
|
|
def __len__(self):
|
|
return len(self.all_keys)
|
|
|
|
|
|
def extract_submodules_state_dict(state_dict: dict[str, torch.Tensor], submodule_names: list[str]):
|
|
"""
|
|
Extract the sub state-dict corresponding to a list of given submodules.
|
|
|
|
Args:
|
|
state_dict (`Dict[str, torch.Tensor]`): The state dict to extract from.
|
|
submodule_names (`List[str]`): The list of submodule names we want to extract.
|
|
"""
|
|
result = {}
|
|
for module_name in submodule_names:
|
|
# We want to catch module_name parameter (module_name.xxx) or potentially module_name, but not any of the
|
|
# submodules that could being like module_name (transformers.h.1 and transformers.h.10 for instance)
|
|
result.update(
|
|
{
|
|
key: param
|
|
for key, param in state_dict.items()
|
|
if key == module_name or key.startswith(module_name + ".")
|
|
}
|
|
)
|
|
return result
|