team-10/venv/Lib/site-packages/narwhals/_dask/dataframe.py
2025-08-02 02:00:33 +02:00

483 lines
17 KiB
Python

from __future__ import annotations
from typing import TYPE_CHECKING, Any
import dask.dataframe as dd
from narwhals._dask.utils import add_row_index, evaluate_exprs
from narwhals._expression_parsing import ExprKind
from narwhals._pandas_like.utils import native_to_narwhals_dtype, select_columns_by_name
from narwhals._typing_compat import assert_never
from narwhals._utils import (
Implementation,
ValidateBackendVersion,
_remap_full_join_keys,
check_column_names_are_unique,
generate_temporary_column_name,
not_implemented,
parse_columns_to_drop,
)
from narwhals.typing import CompliantLazyFrame
if TYPE_CHECKING:
from collections.abc import Iterator, Mapping, Sequence
from io import BytesIO
from pathlib import Path
from types import ModuleType
import dask.dataframe.dask_expr as dx
from typing_extensions import Self, TypeAlias, TypeIs
from narwhals._compliant.typing import CompliantDataFrameAny
from narwhals._dask.expr import DaskExpr
from narwhals._dask.group_by import DaskLazyGroupBy
from narwhals._dask.namespace import DaskNamespace
from narwhals._utils import Version, _LimitedContext
from narwhals.dataframe import LazyFrame
from narwhals.dtypes import DType
from narwhals.typing import AsofJoinStrategy, JoinStrategy, LazyUniqueKeepStrategy
Incomplete: TypeAlias = "Any"
"""Using `_pandas_like` utils with `_dask`.
Typing this correctly will complicate the `_pandas_like`-side.
Very low priority until `dask` adds typing.
"""
class DaskLazyFrame(
CompliantLazyFrame["DaskExpr", "dd.DataFrame", "LazyFrame[dd.DataFrame]"],
ValidateBackendVersion,
):
_implementation = Implementation.DASK
def __init__(
self,
native_dataframe: dd.DataFrame,
*,
version: Version,
validate_backend_version: bool = False,
) -> None:
self._native_frame: dd.DataFrame = native_dataframe
self._version = version
self._cached_schema: dict[str, DType] | None = None
self._cached_columns: list[str] | None = None
if validate_backend_version:
self._validate_backend_version()
@staticmethod
def _is_native(obj: dd.DataFrame | Any) -> TypeIs[dd.DataFrame]:
return isinstance(obj, dd.DataFrame)
@classmethod
def from_native(cls, data: dd.DataFrame, /, *, context: _LimitedContext) -> Self:
return cls(data, version=context._version)
def to_narwhals(self) -> LazyFrame[dd.DataFrame]:
return self._version.lazyframe(self, level="lazy")
def __native_namespace__(self) -> ModuleType:
if self._implementation is Implementation.DASK:
return self._implementation.to_native_namespace()
msg = f"Expected dask, got: {type(self._implementation)}" # pragma: no cover
raise AssertionError(msg)
def __narwhals_namespace__(self) -> DaskNamespace:
from narwhals._dask.namespace import DaskNamespace
return DaskNamespace(version=self._version)
def __narwhals_lazyframe__(self) -> Self:
return self
def _with_version(self, version: Version) -> Self:
return self.__class__(self.native, version=version)
def _with_native(self, df: Any) -> Self:
return self.__class__(df, version=self._version)
def _iter_columns(self) -> Iterator[dx.Series]:
for _col, ser in self.native.items(): # noqa: PERF102
yield ser
def with_columns(self, *exprs: DaskExpr) -> Self:
new_series = evaluate_exprs(self, *exprs)
return self._with_native(self.native.assign(**dict(new_series)))
def collect(
self, backend: Implementation | None, **kwargs: Any
) -> CompliantDataFrameAny:
result = self.native.compute(**kwargs)
if backend is None or backend is Implementation.PANDAS:
from narwhals._pandas_like.dataframe import PandasLikeDataFrame
return PandasLikeDataFrame(
result,
implementation=Implementation.PANDAS,
validate_backend_version=True,
version=self._version,
validate_column_names=True,
)
if backend is Implementation.POLARS:
import polars as pl # ignore-banned-import
from narwhals._polars.dataframe import PolarsDataFrame
return PolarsDataFrame(
pl.from_pandas(result),
validate_backend_version=True,
version=self._version,
)
if backend is Implementation.PYARROW:
import pyarrow as pa # ignore-banned-import
from narwhals._arrow.dataframe import ArrowDataFrame
return ArrowDataFrame(
pa.Table.from_pandas(result),
validate_backend_version=True,
version=self._version,
validate_column_names=True,
)
msg = f"Unsupported `backend` value: {backend}" # pragma: no cover
raise ValueError(msg) # pragma: no cover
@property
def columns(self) -> list[str]:
if self._cached_columns is None:
self._cached_columns = (
list(self.schema)
if self._cached_schema is not None
else self.native.columns.tolist()
)
return self._cached_columns
def filter(self, predicate: DaskExpr) -> Self:
# `[0]` is safe as the predicate's expression only returns a single column
mask = predicate(self)[0]
return self._with_native(self.native.loc[mask])
def simple_select(self, *column_names: str) -> Self:
df: Incomplete = self.native
native = select_columns_by_name(df, list(column_names), self._implementation)
return self._with_native(native)
def aggregate(self, *exprs: DaskExpr) -> Self:
new_series = evaluate_exprs(self, *exprs)
df = dd.concat([val.rename(name) for name, val in new_series], axis=1)
return self._with_native(df)
def select(self, *exprs: DaskExpr) -> Self:
new_series = evaluate_exprs(self, *exprs)
df: Incomplete = self.native
df = select_columns_by_name(
df.assign(**dict(new_series)),
[s[0] for s in new_series],
self._implementation,
)
return self._with_native(df)
def drop_nulls(self, subset: Sequence[str] | None) -> Self:
if subset is None:
return self._with_native(self.native.dropna())
plx = self.__narwhals_namespace__()
mask = ~plx.any_horizontal(plx.col(*subset).is_null(), ignore_nulls=True)
return self.filter(mask)
@property
def schema(self) -> dict[str, DType]:
if self._cached_schema is None:
native_dtypes = self.native.dtypes
self._cached_schema = {
col: native_to_narwhals_dtype(
native_dtypes[col], self._version, self._implementation
)
for col in self.native.columns
}
return self._cached_schema
def collect_schema(self) -> dict[str, DType]:
return self.schema
def drop(self, columns: Sequence[str], *, strict: bool) -> Self:
to_drop = parse_columns_to_drop(self, columns, strict=strict)
return self._with_native(self.native.drop(columns=to_drop))
def with_row_index(self, name: str, order_by: Sequence[str] | None) -> Self:
# Implementation is based on the following StackOverflow reply:
# https://stackoverflow.com/questions/60831518/in-dask-how-does-one-add-a-range-of-integersauto-increment-to-a-new-column/60852409#60852409
if order_by is None:
return self._with_native(add_row_index(self.native, name))
else:
plx = self.__narwhals_namespace__()
columns = self.columns
const_expr = (
plx.lit(value=1, dtype=None).alias(name).broadcast(ExprKind.LITERAL)
)
row_index_expr = (
plx.col(name)
.cum_sum(reverse=False)
.over(partition_by=[], order_by=order_by)
- 1
)
return self.with_columns(const_expr).select(row_index_expr, plx.col(*columns))
def rename(self, mapping: Mapping[str, str]) -> Self:
return self._with_native(self.native.rename(columns=mapping))
def head(self, n: int) -> Self:
return self._with_native(self.native.head(n=n, compute=False, npartitions=-1))
def unique(
self, subset: Sequence[str] | None, *, keep: LazyUniqueKeepStrategy
) -> Self:
if subset and (error := self._check_columns_exist(subset)):
raise error
if keep == "none":
subset = subset or self.columns
token = generate_temporary_column_name(n_bytes=8, columns=subset)
ser = self.native.groupby(subset).size().rename(token)
ser = ser[ser == 1]
unique = ser.reset_index().drop(columns=token)
result = self.native.merge(unique, on=subset, how="inner")
else:
mapped_keep = {"any": "first"}.get(keep, keep)
result = self.native.drop_duplicates(subset=subset, keep=mapped_keep)
return self._with_native(result)
def sort(self, *by: str, descending: bool | Sequence[bool], nulls_last: bool) -> Self:
if isinstance(descending, bool):
ascending: bool | list[bool] = not descending
else:
ascending = [not d for d in descending]
position = "last" if nulls_last else "first"
return self._with_native(
self.native.sort_values(list(by), ascending=ascending, na_position=position)
)
def _join_inner(
self, other: Self, *, left_on: Sequence[str], right_on: Sequence[str], suffix: str
) -> dd.DataFrame:
return self.native.merge(
other.native,
left_on=left_on,
right_on=right_on,
how="inner",
suffixes=("", suffix),
)
def _join_left(
self, other: Self, *, left_on: Sequence[str], right_on: Sequence[str], suffix: str
) -> dd.DataFrame:
result_native = self.native.merge(
other.native,
how="left",
left_on=left_on,
right_on=right_on,
suffixes=("", suffix),
)
extra = [
right_key if right_key not in self.columns else f"{right_key}{suffix}"
for left_key, right_key in zip(left_on, right_on)
if right_key != left_key
]
return result_native.drop(columns=extra)
def _join_full(
self, other: Self, *, left_on: Sequence[str], right_on: Sequence[str], suffix: str
) -> dd.DataFrame:
# dask does not retain keys post-join
# we must append the suffix to each key before-hand
right_on_mapper = _remap_full_join_keys(left_on, right_on, suffix)
other_native = other.native.rename(columns=right_on_mapper)
check_column_names_are_unique(other_native.columns)
right_suffixed = list(right_on_mapper.values())
return self.native.merge(
other_native,
left_on=left_on,
right_on=right_suffixed,
how="outer",
suffixes=("", suffix),
)
def _join_cross(self, other: Self, *, suffix: str) -> dd.DataFrame:
key_token = generate_temporary_column_name(
n_bytes=8, columns=(*self.columns, *other.columns)
)
return (
self.native.assign(**{key_token: 0})
.merge(
other.native.assign(**{key_token: 0}),
how="inner",
left_on=key_token,
right_on=key_token,
suffixes=("", suffix),
)
.drop(columns=key_token)
)
def _join_semi(
self, other: Self, *, left_on: Sequence[str], right_on: Sequence[str]
) -> dd.DataFrame:
other_native = self._join_filter_rename(
other=other,
columns_to_select=list(right_on),
columns_mapping=dict(zip(right_on, left_on)),
)
return self.native.merge(
other_native, how="inner", left_on=left_on, right_on=left_on
)
def _join_anti(
self, other: Self, *, left_on: Sequence[str], right_on: Sequence[str]
) -> dd.DataFrame:
indicator_token = generate_temporary_column_name(
n_bytes=8, columns=(*self.columns, *other.columns)
)
other_native = self._join_filter_rename(
other=other,
columns_to_select=list(right_on),
columns_mapping=dict(zip(right_on, left_on)),
)
df = self.native.merge(
other_native,
how="left",
indicator=indicator_token, # pyright: ignore[reportArgumentType]
left_on=left_on,
right_on=left_on,
)
return df[df[indicator_token] == "left_only"].drop(columns=[indicator_token])
def _join_filter_rename(
self, other: Self, columns_to_select: list[str], columns_mapping: dict[str, str]
) -> dd.DataFrame:
"""Helper function to avoid creating extra columns and row duplication.
Used in `"anti"` and `"semi`" join's.
Notice that a native object is returned.
"""
other_native: Incomplete = other.native
# rename to avoid creating extra columns in join
return (
select_columns_by_name(other_native, columns_to_select, self._implementation)
.rename(columns=columns_mapping)
.drop_duplicates()
)
def join(
self,
other: Self,
*,
how: JoinStrategy,
left_on: Sequence[str] | None,
right_on: Sequence[str] | None,
suffix: str,
) -> Self:
if how == "cross":
result = self._join_cross(other=other, suffix=suffix)
elif left_on is None or right_on is None: # pragma: no cover
raise ValueError(left_on, right_on)
elif how == "inner":
result = self._join_inner(
other=other, left_on=left_on, right_on=right_on, suffix=suffix
)
elif how == "anti":
result = self._join_anti(other=other, left_on=left_on, right_on=right_on)
elif how == "semi":
result = self._join_semi(other=other, left_on=left_on, right_on=right_on)
elif how == "left":
result = self._join_left(
other=other, left_on=left_on, right_on=right_on, suffix=suffix
)
elif how == "full":
result = self._join_full(
other=other, left_on=left_on, right_on=right_on, suffix=suffix
)
else:
assert_never(how)
return self._with_native(result)
def join_asof(
self,
other: Self,
*,
left_on: str,
right_on: str,
by_left: Sequence[str] | None,
by_right: Sequence[str] | None,
strategy: AsofJoinStrategy,
suffix: str,
) -> Self:
plx = self.__native_namespace__()
return self._with_native(
plx.merge_asof(
self.native,
other.native,
left_on=left_on,
right_on=right_on,
left_by=by_left,
right_by=by_right,
direction=strategy,
suffixes=("", suffix),
)
)
def group_by(
self, keys: Sequence[str] | Sequence[DaskExpr], *, drop_null_keys: bool
) -> DaskLazyGroupBy:
from narwhals._dask.group_by import DaskLazyGroupBy
return DaskLazyGroupBy(self, keys, drop_null_keys=drop_null_keys)
def tail(self, n: int) -> Self: # pragma: no cover
native_frame = self.native
n_partitions = native_frame.npartitions
if n_partitions == 1:
return self._with_native(self.native.tail(n=n, compute=False))
else:
msg = "`LazyFrame.tail` is not supported for Dask backend with multiple partitions."
raise NotImplementedError(msg)
def gather_every(self, n: int, offset: int) -> Self:
row_index_token = generate_temporary_column_name(n_bytes=8, columns=self.columns)
plx = self.__narwhals_namespace__()
return (
self.with_row_index(row_index_token, order_by=None)
.filter(
(plx.col(row_index_token) >= offset)
& ((plx.col(row_index_token) - offset) % n == 0)
)
.drop([row_index_token], strict=False)
)
def unpivot(
self,
on: Sequence[str] | None,
index: Sequence[str] | None,
variable_name: str,
value_name: str,
) -> Self:
return self._with_native(
self.native.melt(
id_vars=index,
value_vars=on,
var_name=variable_name,
value_name=value_name,
)
)
def sink_parquet(self, file: str | Path | BytesIO) -> None:
self.native.to_parquet(file)
explode = not_implemented()