199 lines
7.7 KiB
Python
199 lines
7.7 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import Index
|
|
import pandas._testing as tm
|
|
|
|
|
|
def _isnan(val):
|
|
try:
|
|
return val is not pd.NA and np.isnan(val)
|
|
except TypeError:
|
|
return False
|
|
|
|
|
|
def _equivalent_na(dtype, null):
|
|
if dtype.na_value is pd.NA and null is pd.NA:
|
|
return True
|
|
elif _isnan(dtype.na_value) and _isnan(null):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
|
|
class TestGetLoc:
|
|
def test_get_loc(self, any_string_dtype):
|
|
index = Index(["a", "b", "c"], dtype=any_string_dtype)
|
|
assert index.get_loc("b") == 1
|
|
|
|
def test_get_loc_raises(self, any_string_dtype):
|
|
index = Index(["a", "b", "c"], dtype=any_string_dtype)
|
|
with pytest.raises(KeyError, match="d"):
|
|
index.get_loc("d")
|
|
|
|
def test_get_loc_invalid_value(self, any_string_dtype):
|
|
index = Index(["a", "b", "c"], dtype=any_string_dtype)
|
|
with pytest.raises(KeyError, match="1"):
|
|
index.get_loc(1)
|
|
|
|
def test_get_loc_non_unique(self, any_string_dtype):
|
|
index = Index(["a", "b", "a"], dtype=any_string_dtype)
|
|
result = index.get_loc("a")
|
|
expected = np.array([True, False, True])
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_get_loc_non_missing(self, any_string_dtype, nulls_fixture):
|
|
index = Index(["a", "b", "c"], dtype=any_string_dtype)
|
|
with pytest.raises(KeyError):
|
|
index.get_loc(nulls_fixture)
|
|
|
|
def test_get_loc_missing(self, any_string_dtype, nulls_fixture):
|
|
index = Index(["a", "b", nulls_fixture], dtype=any_string_dtype)
|
|
assert index.get_loc(nulls_fixture) == 2
|
|
|
|
|
|
class TestGetIndexer:
|
|
@pytest.mark.parametrize(
|
|
"method,expected",
|
|
[
|
|
("pad", [-1, 0, 1, 1]),
|
|
("backfill", [0, 0, 1, -1]),
|
|
],
|
|
)
|
|
def test_get_indexer_strings(self, any_string_dtype, method, expected):
|
|
expected = np.array(expected, dtype=np.intp)
|
|
index = Index(["b", "c"], dtype=any_string_dtype)
|
|
actual = index.get_indexer(["a", "b", "c", "d"], method=method)
|
|
|
|
tm.assert_numpy_array_equal(actual, expected)
|
|
|
|
def test_get_indexer_strings_raises(self, any_string_dtype):
|
|
index = Index(["b", "c"], dtype=any_string_dtype)
|
|
|
|
msg = "|".join(
|
|
[
|
|
"operation 'sub' not supported for dtype 'str",
|
|
r"unsupported operand type\(s\) for -: 'str' and 'str'",
|
|
]
|
|
)
|
|
with pytest.raises(TypeError, match=msg):
|
|
index.get_indexer(["a", "b", "c", "d"], method="nearest")
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
index.get_indexer(["a", "b", "c", "d"], method="pad", tolerance=2)
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
index.get_indexer(
|
|
["a", "b", "c", "d"], method="pad", tolerance=[2, 2, 2, 2]
|
|
)
|
|
|
|
@pytest.mark.parametrize("null", [None, np.nan, float("nan"), pd.NA])
|
|
def test_get_indexer_missing(self, any_string_dtype, null, using_infer_string):
|
|
# NaT and Decimal("NaN") from null_fixture are not supported for string dtype
|
|
index = Index(["a", "b", null], dtype=any_string_dtype)
|
|
result = index.get_indexer(["a", null, "c"])
|
|
if using_infer_string:
|
|
expected = np.array([0, 2, -1], dtype=np.intp)
|
|
elif any_string_dtype == "string" and not _equivalent_na(
|
|
any_string_dtype, null
|
|
):
|
|
expected = np.array([0, -1, -1], dtype=np.intp)
|
|
else:
|
|
expected = np.array([0, 2, -1], dtype=np.intp)
|
|
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
|
|
class TestGetIndexerNonUnique:
|
|
@pytest.mark.parametrize("null", [None, np.nan, float("nan"), pd.NA])
|
|
def test_get_indexer_non_unique_nas(
|
|
self, any_string_dtype, null, using_infer_string
|
|
):
|
|
index = Index(["a", "b", null], dtype=any_string_dtype)
|
|
indexer, missing = index.get_indexer_non_unique(["a", null])
|
|
|
|
if using_infer_string:
|
|
expected_indexer = np.array([0, 2], dtype=np.intp)
|
|
expected_missing = np.array([], dtype=np.intp)
|
|
elif any_string_dtype == "string" and not _equivalent_na(
|
|
any_string_dtype, null
|
|
):
|
|
expected_indexer = np.array([0, -1], dtype=np.intp)
|
|
expected_missing = np.array([1], dtype=np.intp)
|
|
else:
|
|
expected_indexer = np.array([0, 2], dtype=np.intp)
|
|
expected_missing = np.array([], dtype=np.intp)
|
|
tm.assert_numpy_array_equal(indexer, expected_indexer)
|
|
tm.assert_numpy_array_equal(missing, expected_missing)
|
|
|
|
# actually non-unique
|
|
index = Index(["a", null, "b", null], dtype=any_string_dtype)
|
|
indexer, missing = index.get_indexer_non_unique(["a", null])
|
|
|
|
if using_infer_string:
|
|
expected_indexer = np.array([0, 1, 3], dtype=np.intp)
|
|
elif any_string_dtype == "string" and not _equivalent_na(
|
|
any_string_dtype, null
|
|
):
|
|
pass
|
|
else:
|
|
expected_indexer = np.array([0, 1, 3], dtype=np.intp)
|
|
tm.assert_numpy_array_equal(indexer, expected_indexer)
|
|
tm.assert_numpy_array_equal(missing, expected_missing)
|
|
|
|
|
|
class TestSliceLocs:
|
|
@pytest.mark.parametrize(
|
|
"in_slice,expected",
|
|
[
|
|
# error: Slice index must be an integer or None
|
|
(pd.IndexSlice[::-1], "yxdcb"),
|
|
(pd.IndexSlice["b":"y":-1], ""), # type: ignore[misc]
|
|
(pd.IndexSlice["b"::-1], "b"), # type: ignore[misc]
|
|
(pd.IndexSlice[:"b":-1], "yxdcb"), # type: ignore[misc]
|
|
(pd.IndexSlice[:"y":-1], "y"), # type: ignore[misc]
|
|
(pd.IndexSlice["y"::-1], "yxdcb"), # type: ignore[misc]
|
|
(pd.IndexSlice["y"::-4], "yb"), # type: ignore[misc]
|
|
# absent labels
|
|
(pd.IndexSlice[:"a":-1], "yxdcb"), # type: ignore[misc]
|
|
(pd.IndexSlice[:"a":-2], "ydb"), # type: ignore[misc]
|
|
(pd.IndexSlice["z"::-1], "yxdcb"), # type: ignore[misc]
|
|
(pd.IndexSlice["z"::-3], "yc"), # type: ignore[misc]
|
|
(pd.IndexSlice["m"::-1], "dcb"), # type: ignore[misc]
|
|
(pd.IndexSlice[:"m":-1], "yx"), # type: ignore[misc]
|
|
(pd.IndexSlice["a":"a":-1], ""), # type: ignore[misc]
|
|
(pd.IndexSlice["z":"z":-1], ""), # type: ignore[misc]
|
|
(pd.IndexSlice["m":"m":-1], ""), # type: ignore[misc]
|
|
],
|
|
)
|
|
def test_slice_locs_negative_step(self, in_slice, expected, any_string_dtype):
|
|
index = Index(list("bcdxy"), dtype=any_string_dtype)
|
|
|
|
s_start, s_stop = index.slice_locs(in_slice.start, in_slice.stop, in_slice.step)
|
|
result = index[s_start : s_stop : in_slice.step]
|
|
expected = Index(list(expected), dtype=any_string_dtype)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_slice_locs_negative_step_oob(self, any_string_dtype):
|
|
index = Index(list("bcdxy"), dtype=any_string_dtype)
|
|
|
|
result = index[-10:5:1]
|
|
tm.assert_index_equal(result, index)
|
|
|
|
result = index[4:-10:-1]
|
|
expected = Index(list("yxdcb"), dtype=any_string_dtype)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_slice_locs_dup(self, any_string_dtype):
|
|
index = Index(["a", "a", "b", "c", "d", "d"], dtype=any_string_dtype)
|
|
assert index.slice_locs("a", "d") == (0, 6)
|
|
assert index.slice_locs(end="d") == (0, 6)
|
|
assert index.slice_locs("a", "c") == (0, 4)
|
|
assert index.slice_locs("b", "d") == (2, 6)
|
|
|
|
index2 = index[::-1]
|
|
assert index2.slice_locs("d", "a") == (0, 6)
|
|
assert index2.slice_locs(end="a") == (0, 6)
|
|
assert index2.slice_locs("d", "b") == (0, 4)
|
|
assert index2.slice_locs("c", "a") == (2, 6)
|