208 lines
7.5 KiB
C++
208 lines
7.5 KiB
C++
#pragma once
|
|
|
|
#include <ATen/Tensor.h>
|
|
|
|
#include <utility>
|
|
|
|
namespace at::functionalization {
|
|
|
|
// See Note [Functionalization Pass In Core]
|
|
|
|
// ViewMeta is a class used by the functionalization pass to navigate between
|
|
// a base tensor and a view tensor.
|
|
// For example, if I call `b = a.view1(...)`
|
|
// the functionalization pass will generate and store a ViewMeta on b that looks
|
|
// like:
|
|
//
|
|
// ViewMeta(
|
|
// [<captures>](const Tensor& base, int64_t mutated_view_idx) {
|
|
// return base.view1(...);
|
|
// },
|
|
// [<captures>](const at::Tensor& base, const at::Tensor& mutated_view,
|
|
// int64_t mutated_view_idx) -> at::Tensor {
|
|
// return at::functionalization::impl::view1_inverse(base, mutated_view,
|
|
// ...);
|
|
// }
|
|
//
|
|
// The forward_fn lambda describes how to replay view1 on a tensor.
|
|
//
|
|
// The reverse_fn lambda describes how, given a tensor that is already a view,
|
|
// how to get the corresponding base tensor. See Note [Functionalization Pass:
|
|
// View Inverses] for details.
|
|
struct ViewMeta {
|
|
ViewMeta(
|
|
std::function<Tensor(const Tensor&, int64_t)> forward,
|
|
std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse,
|
|
bool has_symbolic_inputs,
|
|
bool is_multi_output = false,
|
|
bool is_as_strided = false,
|
|
int64_t out_idx = 0)
|
|
: forward_fn(std::move(forward)),
|
|
reverse_fn(std::move(reverse)),
|
|
out_index(out_idx),
|
|
is_multi_output(is_multi_output),
|
|
is_as_strided(is_as_strided),
|
|
has_symbolic_inputs(has_symbolic_inputs) {}
|
|
|
|
std::function<Tensor(const Tensor&, int64_t)> forward_fn;
|
|
std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse_fn;
|
|
// See Note [out_idx in ViewMeta]
|
|
int64_t out_index;
|
|
|
|
// Tells us if this is a multi-output view
|
|
bool is_multi_output;
|
|
|
|
bool is_as_strided;
|
|
|
|
// Tells us if this view operation has any symbolic inputs
|
|
bool has_symbolic_inputs;
|
|
|
|
// Returns a copy of the current ViewMeta, if out_idx matches the current
|
|
// out_index. Otherwise, returns a new ViewMeta with the same forward/reverse
|
|
// functions, but a new out index.
|
|
ViewMeta to_out_idx(int64_t out_idx);
|
|
};
|
|
|
|
// FunctionalStorageImpl is a subclass of StorageImpl used by the
|
|
// functionalization pass. It has no underlying data (similar to meta storage).
|
|
// It also knows how to reflect mutations to tensors in the absence of a valid
|
|
// data pointer.
|
|
//
|
|
// A storage represents the state shared by (potentially multiple) views of the
|
|
// same tensor. For example, in the following code:
|
|
//
|
|
// b = a.view1(...)
|
|
// c = b.view2(...)
|
|
// b.add_(1)
|
|
// --> storage.add_update(b, {view1_meta})
|
|
//
|
|
// The call to add_(1) will result in a call to alias.add_update(b,
|
|
// {view1_meta}), queueing up the mutation from b onto the alias. Later, suppose
|
|
// c is used in an expression (e.g. you try to print c, or pass it to an
|
|
// operator). Doing so will involve "syncing" c. First we apply any pending
|
|
// updates to the alias, and then we regenerate c by replaying its views off of
|
|
// the updated alias. E.g:
|
|
//
|
|
// print(str(c))
|
|
// --> c.sync_()
|
|
// --> alias.apply_updates() // after this, the alias will be updated to
|
|
// reflect the mutation to b
|
|
struct TORCH_API FunctionalStorageImpl : public c10::StorageImpl {
|
|
public:
|
|
struct Update {
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
|
const at::Tensor new_val;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
|
const std::vector<ViewMeta> view_metas;
|
|
};
|
|
|
|
explicit FunctionalStorageImpl(const Tensor& value);
|
|
|
|
void add_update(
|
|
const Tensor& updated_val,
|
|
const std::vector<ViewMeta>& view_metas);
|
|
bool apply_updates();
|
|
const Tensor& base() {
|
|
return base_;
|
|
}
|
|
size_t generation() const {
|
|
return generation_;
|
|
}
|
|
void freeze() {
|
|
frozen_ = true;
|
|
}
|
|
|
|
c10::SymInt get_storage_size(bool before) {
|
|
if (before) {
|
|
return original_storage_size_;
|
|
} else {
|
|
return curr_storage_size_;
|
|
}
|
|
}
|
|
|
|
~FunctionalStorageImpl() override = default;
|
|
|
|
void mark_mutation() {
|
|
mutation_counter_++;
|
|
}
|
|
void mark_mutation_during_no_grad_or_inference_mode() {
|
|
mutation_counter_during_no_grad_or_inference_mode_++;
|
|
}
|
|
void mark_mutation_hidden_from_autograd() {
|
|
mutation_counter_hidden_from_autograd_++;
|
|
}
|
|
|
|
bool are_all_mutations_under_no_grad_or_inference_mode() const {
|
|
auto non_autograd_mutations =
|
|
mutation_counter_during_no_grad_or_inference_mode_ +
|
|
mutation_counter_hidden_from_autograd_;
|
|
// The <= is because both counters will technically be incremented, if we
|
|
// perform e.g. a triton kernel mutation under no_grad
|
|
return mutation_counter_ <= non_autograd_mutations;
|
|
}
|
|
|
|
bool are_all_mutations_hidden_from_autograd() const {
|
|
// mutations under no_grad / inference_mode are technically not hidden from
|
|
// autograd - they change the version counter
|
|
return mutation_counter_ <= mutation_counter_hidden_from_autograd_;
|
|
}
|
|
|
|
void mark_inductor_storage_resize(c10::SymInt new_size) {
|
|
inductor_storage_resized_ = true;
|
|
curr_storage_size_ = std::move(new_size);
|
|
}
|
|
|
|
bool was_inductor_storage_resized() {
|
|
return inductor_storage_resized_;
|
|
}
|
|
|
|
private:
|
|
// NB: base_ should always point to a tensor BELOW the current
|
|
// functionalization layer. This is mainly to avoid reference cycles. e.g.
|
|
// given `b = a.view(...)` Both a.storage_ and b.storage_ are a
|
|
// FunctionStorageImpl containing an Walualias, with contains a Tensor
|
|
// `base_`. In this case (where a and b are FunctionalTensorWrapper's), base_
|
|
// should point not to a, but to a's unwrapped value, a.value_` See Note
|
|
// [Functionalization: Walualias Removal] for a diagram that shows this
|
|
// visually.
|
|
at::Tensor base_;
|
|
std::vector<Update> updates_;
|
|
// generation_ gets incremented every time a mutation is queued onto the
|
|
// alias. It is used to determine if a given tensor is "up to date", or if it
|
|
// needs to be regenerated from the alias.
|
|
size_t generation_ = 0;
|
|
// If frozen, no more mutations are allowed on this storage. Once frozen, a
|
|
// storage cannot be unfrozen.
|
|
bool frozen_ = false;
|
|
|
|
// These mutation counters are bumped on the storage
|
|
// whenever a FunctionalTensorWrapper experiences a mutation.
|
|
// When the mutation is under no_grad, or comes from a triton kernel, we also
|
|
// bump the corresponding during_no_grad or hidden_from_autograd counters. Why
|
|
// do we need to detect these two situations separately from "normal" input
|
|
// mutations? (1) "normal" input mutations can mutate autograd metadata like
|
|
// .grad_fn,
|
|
// in which case they need to be replayed outside of the compiled graph
|
|
// (2) "no_grad" input mutations are generally safe to keep in the graph (and
|
|
// compile),
|
|
// but they bump the tensor's VC, so we need to mark_dirty() on the inputs
|
|
// in torch.compile
|
|
// (3) mutations that are fully hidden from autograd (e.g. from a triton
|
|
// kernel)
|
|
// do not mutate any autograd state, and be fully kept in the graph
|
|
// When we detect that an input was mutated, we need to be able to tell if:
|
|
// (1) all of the mutations were from triton kernels
|
|
// (2) all of the mutations were under no_grad
|
|
uint64_t mutation_counter_during_no_grad_or_inference_mode_ = 0;
|
|
uint64_t mutation_counter_ = 0;
|
|
uint64_t mutation_counter_hidden_from_autograd_ = 0;
|
|
|
|
// Used to tell if:
|
|
// (1) There were any storage resizes on a graph input
|
|
// (2) The original/curr storage size tell us if these resizes result in a nop
|
|
bool inductor_storage_resized_ = false;
|
|
c10::SymInt original_storage_size_;
|
|
c10::SymInt curr_storage_size_;
|
|
};
|
|
|
|
} // namespace at::functionalization
|