team-10/venv/Lib/site-packages/torch/utils/_sympy/reference.py
2025-08-02 02:00:33 +02:00

581 lines
13 KiB
Python

# mypy: allow-untyped-defs
import math
import operator
from typing import Union
import sympy
import torch
from torch.utils._sympy.functions import (
_keep_float,
BitwiseFn_bitwise_and,
BitwiseFn_bitwise_or,
FloatPow,
FloatTrueDiv,
FloorDiv,
IntTrueDiv,
Max,
Min,
Mod,
OpaqueUnaryFn_exp,
OpaqueUnaryFn_log,
OpaqueUnaryFn_log2,
OpaqueUnaryFn_sqrt,
PowByNatural,
RoundDecimal,
RoundToInt,
ToFloat,
TruncToInt,
)
# The sympy interpretation of operators. It will also sometimes work with
# plain int/float, but if you do certain operations you will get out a
# sympy.Basic in the end. If you want the Python/FX traceable interpretation,
# check PythonReferenceAnalysis.
# NB: For magic methods this needs to use normal magic methods
# so that test_magic_methods works
class ReferenceAnalysis:
@staticmethod
def constant(c, dtype):
return sympy.sympify(c)
@staticmethod
def or_(a, b):
return a | b
@staticmethod
def and_(a, b):
return a & b
@staticmethod
def eq(a, b):
if isinstance(a, sympy.Expr) or isinstance(b, sympy.Expr):
return sympy.Eq(a, b)
return a == b
@classmethod
def ne(cls, a, b):
return cls.not_(cls.eq(a, b))
@staticmethod
def lt(a, b):
return a < b
@staticmethod
def gt(a, b):
return a > b
@staticmethod
def le(a, b):
return a <= b
@staticmethod
def ge(a, b):
return a >= b
@staticmethod
def not_(a):
assert not isinstance(a, bool)
return ~a
@staticmethod
def reciprocal(x):
return FloatTrueDiv(1.0, x)
@staticmethod
def square(x):
return PowByNatural(x, 2)
@staticmethod
def trunc_to_int(x, dtype):
return TruncToInt(x)
@staticmethod
def ceil_to_int(x, dtype):
return sympy.ceiling(x)
@staticmethod
def floor_to_int(x, dtype):
return sympy.floor(x)
@staticmethod
def floor(x):
return _keep_float(sympy.floor)(x)
@staticmethod
def ceil(x):
return _keep_float(sympy.ceiling)(x)
@staticmethod
def to_dtype(x, dtype):
if dtype == torch.float64:
return ToFloat(x)
raise NotImplementedError(f"to_dtype {dtype} NYI")
@staticmethod
def mod(x, y):
return Mod(x, y)
@staticmethod
def abs(x):
return abs(x)
@staticmethod
def neg(x):
return -x
@staticmethod
def truediv(a, b):
return FloatTrueDiv(a, b)
@staticmethod
def int_truediv(a, b):
return IntTrueDiv(a, b)
@staticmethod
def floordiv(a, b):
return FloorDiv(a, b)
@staticmethod
def truncdiv(a, b):
raise NotImplementedError("TODO: truncdiv")
@staticmethod
def add(a, b):
return _keep_float(operator.add)(a, b)
@classmethod
def sym_sum(cls, args):
return sympy.Add(*args)
@staticmethod
def mul(a, b):
return _keep_float(operator.mul)(a, b)
@staticmethod
def sub(a, b):
return _keep_float(operator.sub)(a, b)
@staticmethod
def exp(x):
return OpaqueUnaryFn_exp(x)
@staticmethod
def log(x):
return OpaqueUnaryFn_log(x)
@staticmethod
def log2(x):
return OpaqueUnaryFn_log2(x)
@staticmethod
def sqrt(x):
return OpaqueUnaryFn_sqrt(x)
@staticmethod
def pow(a, b):
return _keep_float(FloatPow)(a, b)
@staticmethod
def pow_by_natural(a, b):
return PowByNatural(a, b)
@staticmethod
def minimum(a, b):
return Min(a, b)
@staticmethod
def maximum(a, b):
return Max(a, b)
@staticmethod
def round_to_int(a, dtype):
return RoundToInt(a)
@staticmethod
def round_decimal(a, b):
return RoundDecimal(a, b)
@staticmethod
def bitwise_and(a, b):
return BitwiseFn_bitwise_and(a, b)
@staticmethod
def bitwise_or(a, b):
return BitwiseFn_bitwise_or(a, b)
# Unlike ReferenceAnalysis, does NOT sympyify, instead, works with plain
# Python types and is FX traceable. Inheritance here is purely for code
# sharing (TODO: considering splitting out a BaseReferenceAnalysis).
class PythonReferenceAnalysis(ReferenceAnalysis):
@staticmethod
def constant(c, dtype):
if dtype is torch.int64:
return int(c)
elif dtype is torch.double:
return float(c)
elif dtype is torch.bool:
return bool(c)
else:
raise AssertionError(f"unrecognized dtype {dtype}")
@staticmethod
def not_(a):
return torch.sym_not(a)
@classmethod
def sym_sum(cls, args):
if len(args) == 0:
return 0
if len(args) == 1:
return args[0]
acc = cls.add(args[0], args[1])
for i in range(2, len(args)):
acc = cls.add(acc, args[i])
return acc
@staticmethod
def floordiv(a, b):
return a // b
@staticmethod
def mod(x, y):
return x % y
@staticmethod
def truncdiv(a, b):
return a / b
@staticmethod
def to_dtype(x, dtype):
if dtype == torch.float64:
return torch.sym_float(x)
raise NotImplementedError(f"to_dtype {dtype} NYI")
@staticmethod
def exp(x):
raise AssertionError("exp is not valid shape sympy expr")
@staticmethod
def log(x):
raise AssertionError("log is not valid shape sympy expr")
@staticmethod
def log2(x):
return torch._sym_log2(x) # type: ignore[attr-defined]
@staticmethod
def sqrt(x):
return torch._sym_sqrt(x) # type: ignore[attr-defined]
@staticmethod
def minimum(a, b):
return torch.sym_min(a, b)
@staticmethod
def maximum(a, b):
return torch.sym_max(a, b)
@staticmethod
def floor_to_int(x, dtype):
return math.floor(x)
@staticmethod
def ceil_to_int(x, dtype):
return math.ceil(x)
@staticmethod
def floor(x):
return float(math.floor(x))
@staticmethod
def ceil(x):
return float(math.ceil(x))
@staticmethod
def truediv(a, b):
return a / b
@staticmethod
def pow(a, b):
return a**b
@staticmethod
def pow_by_natural(a, b):
# Pray that safe_pow is not needed here lol. In particular, this
# never participates in VR low/high ranges, so overflow should be
# unlikely
return a**b
@staticmethod
def round_to_int(a, dtype):
return round(a)
@staticmethod
def round_decimal(a, b):
return round(a, ndigits=b)
@staticmethod
def bitwise_and(a, b):
return a & b
@staticmethod
def bitwise_or(a, b):
return a | b
# Like PythonReferenceAnalysis, but some export-unfriendly choices of
# operators to make things faster
class OptimizedPythonReferenceAnalysis(PythonReferenceAnalysis):
@staticmethod
def sym_sum(args):
return torch.sym_sum(args)
def _to_dtype(x: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
return torch.ops.prims.convert_element_type.default(x, dtype)
# Suppose we have some int/float arguments. This diagram commutes:
#
# int/float -- PythonReferenceAnalysis.op --> int/float
# | |
# | |
# torch.tensor(..., dtype=torch.int64/torch.float64)
# | |
# V V
# Tensor -- TensorReferenceAnalysis.op --> Tensor
#
# NB: int before and after must be representable in int64 (we will
# insert guards accordingly.)
#
# This is guaranteed to be FX traceable with OpOverloads only.
class TensorReferenceAnalysis:
# NB: This is actually dead, because with Proxy tracing the factory
# function isn't traced correctly. Here for completeness.
@staticmethod
def constant(c, dtype):
d: Union[int, float, bool]
if dtype is torch.int64:
d = int(c)
elif dtype is torch.double:
d = float(c)
elif dtype is torch.bool:
d = bool(c)
else:
raise AssertionError(f"unrecognized dtype {dtype}")
return torch.ops.aten.scalar_tensor.default(d, dtype=dtype)
@staticmethod
def or_(a, b):
return torch.ops.aten.logical_or.default(a, b)
@staticmethod
def and_(a, b):
return torch.ops.aten.logical_and.default(a, b)
@staticmethod
def bitwise_and(a, b):
return torch.ops.aten.bitwise_and(a, b)
@staticmethod
def bitwise_or(a, b):
return torch.ops.aten.bitwise_or(a, b)
@staticmethod
def eq(a, b):
return torch.ops.aten.eq.Tensor(a, b)
@classmethod
def ne(cls, a, b):
return torch.ops.aten.ne.Tensor(a, b)
@staticmethod
def lt(a, b):
return torch.ops.aten.lt.Tensor(a, b)
@staticmethod
def gt(a, b):
return torch.ops.aten.gt.Tensor(a, b)
@staticmethod
def le(a, b):
return torch.ops.aten.le.Tensor(a, b)
@staticmethod
def ge(a, b):
return torch.ops.aten.ge.Tensor(a, b)
@staticmethod
def not_(a):
return torch.ops.aten.logical_not.default(a)
@staticmethod
def reciprocal(x):
return torch.ops.aten.reciprocal.default(x)
@staticmethod
def square(x):
# TODO: maybe composite implicit autograd doesn't work here?
return torch.ops.aten.square.default(x)
@staticmethod
def trunc_to_int(x, dtype):
return _to_dtype(torch.ops.aten.trunc.default(x), dtype)
@staticmethod
def ceil_to_int(x, dtype):
return _to_dtype(torch.ops.aten.ceil.default(x), dtype)
@staticmethod
def floor_to_int(x, dtype):
return _to_dtype(torch.ops.aten.floor.default(x), dtype)
@staticmethod
def floor(x):
return torch.ops.aten.floor.default(x)
@staticmethod
def ceil(x):
return torch.ops.aten.ceil.default(x)
@staticmethod
def to_dtype(x, dtype):
return _to_dtype(x, dtype)
@staticmethod
def mod(x, y):
# TODO: https://github.com/pytorch/pytorch/pull/133654
raise NotImplementedError(
"no C-style modulus operation available from frontend atm"
)
@staticmethod
def abs(x):
return torch.ops.aten.abs.default(x)
@staticmethod
def neg(x):
return torch.ops.aten.neg.default(x)
@staticmethod
def truediv(a, b):
return torch.ops.aten.true_divide.Tensor(a, b)
@staticmethod
def int_truediv(a, b):
raise NotImplementedError(
"Python int truediv difficult to implement in PyTorch atm"
)
# TODO: This is wrong, CPython has a custom implementation of true
# division that results in higher precision when the floats are
# sufficiently large. Short term fix: add a guard here
return torch.ops.aten.true_divide.default(
_to_dtype(a, torch.float64), _to_dtype(b, torch.float64)
)
@staticmethod
def floordiv(a, b):
return torch.ops.aten.div.Tensor_mode(a, b, rounding_mode="floor")
@staticmethod
def truncdiv(a, b):
raise NotImplementedError(
"no C-style truncdiv operation available from frontend atm"
)
@staticmethod
def add(a, b):
return torch.ops.aten.add.Tensor(a, b)
@staticmethod
def mul(a, b):
return torch.ops.aten.mul.Tensor(a, b)
@staticmethod
def sub(a, b):
return torch.ops.aten.sub.Tensor(a, b)
@staticmethod
def exp(x):
return torch.ops.aten.exp.default(x)
@staticmethod
def log(x):
return torch.ops.aten.log.default(x)
@staticmethod
def log2(x):
return torch.ops.aten.log2.default(x)
@staticmethod
def sqrt(x):
return torch.ops.aten.sqrt.default(x)
@staticmethod
def sin(x):
return torch.ops.aten.sin.default(x)
@staticmethod
def cos(x):
return torch.ops.aten.cos.default(x)
@staticmethod
def tanh(x):
return torch.ops.aten.tanh.default(x)
@staticmethod
def sinh(x):
return torch.ops.aten.sinh.default(x)
@staticmethod
def cosh(x):
return torch.ops.aten.cosh.default(x)
@staticmethod
def tan(x):
return torch.ops.aten.tan.default(x)
@staticmethod
def acos(x):
return torch.ops.aten.acos.default(x)
@staticmethod
def atan(x):
return torch.ops.aten.atan.default(x)
@staticmethod
def asin(x):
return torch.ops.aten.asin.default(x)
@staticmethod
def pow(a, b):
return torch.ops.aten.pow.Tensor_Tensor(a, b)
@staticmethod
def pow_by_natural(a, b):
# NB: pow handles int x int fine
return torch.ops.aten.pow.Tensor_Tensor(a, b)
@staticmethod
def minimum(a, b):
return torch.ops.aten.minimum.default(a, b)
@staticmethod
def maximum(a, b):
return torch.ops.aten.maximum.default(a, b)
@staticmethod
def round_to_int(a, dtype):
return torch.ops.aten.round.default(a)
@staticmethod
def round_decimal(a, b):
raise NotImplementedError(
"round decimal doesn't support Tensor second argument atm"
)
# return torch.ops.aten.round.decimals(a, b)