team-10/venv/Lib/site-packages/transformers/models/emu3/modeling_emu3.py
2025-08-02 02:00:33 +02:00

1622 lines
62 KiB
Python

# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/emu3/modular_emu3.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_emu3.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from functools import cached_property
from typing import Callable, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
from ...integrations import use_kernel_forward_from_hub
from ...masking_utils import create_causal_mask
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple
from ...utils.generic import check_model_inputs
from .configuration_emu3 import Emu3Config, Emu3TextConfig, Emu3VQVAEConfig
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Emu3Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Emu3Config, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor, torch.Tensor]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
@use_kernel_forward_from_hub("RMSNorm")
class Emu3RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Emu3RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class Emu3MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class Emu3DecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: Emu3Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Emu3Attention(config=config, layer_idx=layer_idx)
self.mlp = Emu3MLP(config)
self.input_layernorm = Emu3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Emu3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.dropout = nn.Dropout(config.attention_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + self.dropout(hidden_states)
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.dropout(hidden_states)
return hidden_states
class Emu3VQVAEVectorQuantizer(nn.Module):
"""
A module for vector quantization using learned embedding vectors.
This module implements the quantization process similar to te one described in
the VQ-VAE (Vector Quantized Variational AutoEncoder) paper. It quantizes continuous
input vectors into discrete codebook vectors, which are learned during training.
Current implementation improves over previous ones by avoiding costly matrix multiplications
and allowing for post-hoc remapping of indices.
"""
def __init__(self, config: Emu3VQVAEConfig):
super().__init__()
self.embedding = nn.Embedding(config.codebook_size, config.embed_dim)
self.embedding.weight.data.uniform_(-1.0 / config.codebook_size, 1.0 / config.codebook_size)
def forward(self, hidden_state: torch.Tensor):
batch_size, temporal, channels, height, width = hidden_state.shape
hidden_state = hidden_state.permute(0, 1, 3, 4, 2).contiguous()
hidden_state_flattened = hidden_state.view(-1, channels)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
hidden_state_sum = torch.sum(hidden_state_flattened**2, dim=1, keepdim=True)
embedding_sum = torch.sum(self.embedding.weight**2, dim=1)
# "bd,dn->bn",
distances = 2 * torch.matmul(hidden_state_flattened, self.embedding.weight.transpose(0, 1))
distances = hidden_state_sum + embedding_sum - distances
min_encoding_indices = torch.argmin(distances, dim=1)
min_encoding_indices = min_encoding_indices.view(batch_size, temporal, height, width)
return min_encoding_indices
class Emu3VQVAEEncoderConvDownsample(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, hidden_states):
# no asymmetric padding in torch conv, must do it ourselves
hidden_states = F.pad(hidden_states, pad=(0, 1, 0, 1), mode="constant", value=0)
hidden_states = self.conv(hidden_states)
return hidden_states
class Emu3VQVAEEncoderConvUpsample(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, hidden_states):
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
hidden_states = self.conv(hidden_states)
return hidden_states
class Emu3VQVAEConv3d(nn.Module):
def __init__(
self,
in_channel: int,
out_channel: int,
kernel_size: tuple[int],
stride: tuple[int],
):
super().__init__()
padding_sizes = [one_kernel - one_stride for one_kernel, one_stride in zip(kernel_size[1:], stride[1:])]
self.padding = ()
for pad_size in padding_sizes[::-1]:
self.padding += (pad_size // 2 + pad_size % 2, pad_size // 2)
self.padding += (2, 0)
self.conv = nn.Conv3d(
in_channel,
out_channel,
kernel_size,
stride=stride,
)
def forward(self, hidden_states: torch.Tensor):
hidden_states = F.pad(hidden_states, self.padding)
hidden_states = self.conv(hidden_states)
return hidden_states
class Emu3VQVAESpatialNorm(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
):
super().__init__()
self.norm_layer = nn.GroupNorm(
num_channels=out_channels,
num_groups=32,
eps=1e-6,
affine=True,
)
self.conv_y = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
self.conv_b = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor):
quant_states = F.interpolate(quant_states, size=hidden_states.shape[-2:], mode="nearest")
hidden_states = self.norm_layer(hidden_states)
hidden_states = hidden_states * self.conv_y(quant_states) + self.conv_b(quant_states)
return hidden_states
class Emu3VQVAETemporalUpsample(nn.Module):
def __init__(
self,
in_channel: int,
out_channel: int,
):
super().__init__()
self.conv = Emu3VQVAEConv3d(
in_channel,
out_channel,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
)
def forward(self, hidden_states: torch.Tensor):
batch_size, channels, temporal, height, width = hidden_states.shape
hidden_states = hidden_states.permute(0, 1, 3, 4, 2).contiguous().view(batch_size, -1, temporal)
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
hidden_states = hidden_states.view(batch_size, channels, height, width, -1).permute(0, 1, 4, 2, 3).contiguous()
hidden_states = self.conv(hidden_states)
return hidden_states
class Emu3VQVAETemporalDownsample(nn.Module):
def __init__(
self,
in_channel: int,
out_channel: int,
):
super().__init__()
self.conv = Emu3VQVAEConv3d(
in_channel,
out_channel,
kernel_size=(4, 3, 3),
stride=(2, 1, 1),
)
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.conv(hidden_states)
return hidden_states
class Emu3VQVAETemporalResnetBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels=None,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.norm1 = nn.BatchNorm3d(in_channels)
self.conv1 = Emu3VQVAEConv3d(
in_channels,
out_channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
)
self.norm2 = nn.BatchNorm3d(out_channels)
self.conv2 = Emu3VQVAEConv3d(
out_channels,
out_channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv3d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, hidden_states):
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.in_channels != self.out_channels:
residual = self.nin_shortcut(residual)
return residual + hidden_states
class Emu3VQVAEResnetBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
quant_channels: Optional[int] = None,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.quant_channels = quant_channels
if quant_channels is None:
self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True)
self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=32, eps=1e-6, affine=True)
else:
self.norm1 = Emu3VQVAESpatialNorm(quant_channels, in_channels)
self.norm2 = Emu3VQVAESpatialNorm(quant_channels, out_channels)
self.conv1 = nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
self.conv2 = nn.Conv2d(
out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, hidden_states: torch.Tensor, quant_channels: Optional[torch.Tensor] = None):
norm_args = () if self.quant_channels is None else (quant_channels,)
residual = hidden_states
hidden_states = self.norm1(hidden_states, *norm_args)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states, *norm_args)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.in_channels != self.out_channels:
residual = self.nin_shortcut(residual)
return residual + hidden_states
class Emu3VQVAEAttentionBlock(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Emu3VQVAEConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.is_causal = False
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
# for compatibility with the attention interface
self.num_key_value_groups = 1
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, seq_length, embed_dim = hidden_states.shape
queries = self.q_proj(hidden_states)
keys = self.k_proj(hidden_states)
values = self.v_proj(hidden_states)
queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
queries,
keys,
values,
attention_mask,
is_causal=self.is_causal,
scaling=self.scale,
dropout=0.0 if not self.training else self.dropout,
)
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class Emu3VQVAEGroupNorm(nn.GroupNorm):
"""
Same as the torch GroupNorm with the only difference that this ones accepts
an optional kwarg `quant_states` which is not used. This class makes it easier to
use SpatialNorm or GroupNorm without conditionals
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
def forward(self, input, quant_states=None):
return F.group_norm(input, self.num_groups, self.weight, self.bias, self.eps)
class Emu3VQVAEMiddleBlock(nn.Module):
def __init__(self, config, in_channels, quant_channels=None):
super().__init__()
self.block_1 = Emu3VQVAEResnetBlock(
in_channels=in_channels,
out_channels=in_channels,
quant_channels=quant_channels,
)
self.attn_1 = Emu3VQVAEAttentionBlock(config)
if quant_channels is None:
self.attn_norm = Emu3VQVAEGroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True)
else:
self.attn_norm = Emu3VQVAESpatialNorm(quant_channels, in_channels)
self.block_2 = Emu3VQVAEResnetBlock(
in_channels=in_channels,
out_channels=in_channels,
quant_channels=quant_channels,
)
def forward(self, hidden_states: torch.FloatTensor, quant_states: Optional[torch.FloatTensor] = None):
hidden_states = self.block_1(hidden_states, quant_states)
residual = hidden_states
hidden_states = self.attn_norm(hidden_states, quant_states)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
hidden_states = self.attn_1(hidden_states)[0]
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = residual + hidden_states
hidden_states = self.block_2(hidden_states, quant_states)
return hidden_states
class Emu3VQVAEDownBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.num_resolutions = len(config.channel_multiplier)
self.num_res_blocks = config.num_res_blocks
base_channels = config.base_channels
channel_multiplier = config.channel_multiplier
in_channel_multiplier = (1,) + tuple(channel_multiplier)
self.in_channel_multiplier = in_channel_multiplier
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
attn_norms = nn.ModuleList()
block_in = base_channels * in_channel_multiplier[i_level]
block_out = base_channels * channel_multiplier[i_level]
for i_block in range(self.num_res_blocks):
block.append(
Emu3VQVAEResnetBlock(
in_channels=block_in,
out_channels=block_out,
)
)
block_in = block_out
if config.attn_resolutions is not None and i_level in config.attn_resolutions:
attn.append(Emu3VQVAEAttentionBlock(config))
attn_norms.append(nn.GroupNorm(num_channels=block_in, num_groups=32, eps=1e-6, affine=True))
down = nn.Module()
down.block = block
down.attn = attn
down.attn_norms = attn_norms
if i_level != self.num_resolutions - 1:
down.downsample = Emu3VQVAEEncoderConvDownsample(block_in)
self.down.append(down)
def forward(self, hidden_states: torch.FloatTensor):
for i_level, blocks in enumerate(self.down):
for i_block in range(self.num_res_blocks):
hidden_states = blocks.block[i_block](hidden_states)
if len(blocks.attn) > 0:
residual = hidden_states
hidden_states = blocks.attn_norms[i_block](hidden_states)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
hidden_states = blocks.attn[i_block](hidden_states)[0]
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = residual + hidden_states
if i_level != self.num_resolutions - 1:
hidden_states = blocks.downsample(hidden_states)
return hidden_states
class Emu3VQVAEUpBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.num_resolutions = len(config.channel_multiplier)
self.num_res_blocks = config.num_res_blocks
quant_channels = config.embed_dim
block_in = config.base_channels * config.channel_multiplier[-1]
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
attn_norms = nn.ModuleList()
block_out = config.base_channels * config.channel_multiplier[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
Emu3VQVAEResnetBlock(
in_channels=block_in,
out_channels=block_out,
quant_channels=quant_channels,
)
)
block_in = block_out
if i_level in config.attn_resolutions:
attn.append(Emu3VQVAEAttentionBlock(config))
attn_norms.append(Emu3VQVAESpatialNorm(quant_channels, block_in))
up = nn.Module()
up.block = block
up.attn = attn
up.attn_norms = attn_norms
if i_level != 0:
up.upsample = Emu3VQVAEEncoderConvUpsample(block_in)
self.up.insert(0, up)
def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor):
for i_level, blocks in enumerate(self.up[::-1]):
for i_block in range(self.num_res_blocks + 1):
hidden_states = blocks.block[i_block](hidden_states, quant_states)
if len(blocks.attn) > 0:
residual = hidden_states
hidden_states = blocks.attn_norms[i_block](hidden_states, quant_states)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
hidden_states = blocks.attn[i_block](hidden_states)[0]
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = residual + hidden_states
if i_level != len(self.up) - 1:
hidden_states = blocks.upsample(hidden_states)
return hidden_states
class Emu3VQVAEEncoder(nn.Module):
def __init__(self, config):
super().__init__()
base_channels = config.base_channels
in_channels = config.in_channels
double_latent = config.double_latent
latent_channels = config.latent_channels
channel_multiplier = config.channel_multiplier
out_channels = 2 * latent_channels if double_latent else latent_channels
block_in = base_channels * channel_multiplier[-1]
self.conv_in = torch.nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1)
self.down_block = Emu3VQVAEDownBlock(config)
self.middle_block = Emu3VQVAEMiddleBlock(config, block_in)
self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = torch.nn.Conv2d(
block_in,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
temporal_down_blocks = int(math.log2(config.temporal_downsample_factor))
self.time_conv = nn.ModuleList()
self.time_res_stack = nn.ModuleList()
for i in range(temporal_down_blocks):
conv = Emu3VQVAETemporalDownsample(out_channels, out_channels)
self.time_conv.append(conv)
for _ in range(config.num_res_blocks):
time_res_conv = Emu3VQVAETemporalResnetBlock(
in_channels=out_channels,
out_channels=out_channels,
)
self.time_res_stack.append(time_res_conv)
def forward(self, pixel_values: torch.LongTensor):
temporal_dim = pixel_values.shape[1]
pixel_values = pixel_values.reshape(-1, *pixel_values.shape[2:])
# downsampling & middle
hidden_states = self.conv_in(pixel_values)
hidden_states = self.down_block(hidden_states)
hidden_states = self.middle_block(hidden_states)
# end
hidden_states = self.norm_out(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv_out(hidden_states)
hidden_states = hidden_states.reshape(-1, temporal_dim, *hidden_states.shape[1:])
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
# temporal convs
for conv in self.time_conv:
hidden_states = conv(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
for layer in self.time_res_stack:
hidden_states = layer(hidden_states)
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
return hidden_states
class Emu3VQVAEDecoder(nn.Module):
def __init__(self, config: Emu3VQVAEConfig):
super().__init__()
quant_channels = config.embed_dim
block_in = config.base_channels * config.channel_multiplier[-1]
self.time_res_stack = nn.ModuleList()
for _ in range(config.num_res_blocks):
time_res_conv = Emu3VQVAETemporalResnetBlock(
in_channels=config.latent_channels, out_channels=config.latent_channels
)
self.time_res_stack.append(time_res_conv)
temp_upsample_block_num = int(math.log2(config.temporal_downsample_factor))
self.time_conv = nn.ModuleList()
for i in range(temp_upsample_block_num):
conv = Emu3VQVAETemporalUpsample(config.latent_channels, config.latent_channels)
self.time_conv.append(conv)
self.conv_in = nn.Conv2d(
config.latent_channels,
block_in,
kernel_size=3,
stride=1,
padding=1,
)
self.middle_block = Emu3VQVAEMiddleBlock(config, block_in, quant_channels=quant_channels)
self.up_block = Emu3VQVAEUpBlock(config)
block_in = config.base_channels * config.channel_multiplier[0]
self.norm_out = Emu3VQVAESpatialNorm(quant_channels, block_in)
self.conv_out = nn.Conv2d(
block_in,
config.out_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor):
hidden_quant_states = torch.cat((hidden_states, quant_states), dim=0)
hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4)
# temporal convs
for layer in self.time_res_stack:
hidden_quant_states = layer(hidden_quant_states)
for layer in self.time_conv:
hidden_quant_states = layer(hidden_quant_states)
hidden_quant_states *= torch.sigmoid(hidden_quant_states)
hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4)
hidden_states, quant_states = torch.chunk(hidden_quant_states, 2, dim=0)
hidden_states = hidden_states.reshape(-1, *hidden_states.shape[2:])
quant_states = quant_states.reshape(-1, *quant_states.shape[2:])
hidden_states = self.conv_in(hidden_states)
# middle & upsampling
hidden_states = self.middle_block(hidden_states, quant_states)
hidden_states = self.up_block(hidden_states, quant_states)
hidden_states = self.norm_out(hidden_states, quant_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
@auto_docstring(
custom_intro="""
The VQ-VAE model used in Emu3 for encoding/decoding images into discrete tokens.
This model follows the "Make-a-scene: Scene-based text-to-image generation with human priors" paper from
[ Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv
Taigman](https://huggingface.co/papers/2203.13131).
"""
)
class Emu3VQVAE(PreTrainedModel):
config: Emu3VQVAEConfig
base_model_prefix = "emuvideovq"
main_input_name = "pixel_values"
_supports_sdpa = True
_supports_flash_attn = True
_supports_flex_attn = True
_supports_attention_backend = True
_no_split_modules = [
"Emu3VQVAETemporalResnetBlock",
"Emu3VQVAEAttentionBlock",
"Emu3VQVAEResnetBlock",
"Emu3VQVAEVectorQuantizer",
]
def _init_weights(self, module):
if isinstance(module, (nn.Conv2d, nn.Conv3d)):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, nn.Linear):
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1.0)
nn.init.constant_(module.bias, 0.0)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_()
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def __init__(self, config: Emu3VQVAEConfig):
super().__init__(config)
self.config = config
self.encoder = Emu3VQVAEEncoder(config)
self.decoder = Emu3VQVAEDecoder(config)
self.quantize = Emu3VQVAEVectorQuantizer(config)
self.vision_spatial_factor = 2 ** (len(config.channel_multiplier) - 1)
self.quant_conv = Emu3VQVAEConv3d(
config.latent_channels, config.embed_dim, kernel_size=(3, 1, 1), stride=(1, 1, 1)
)
self.post_quant_conv = Emu3VQVAEConv3d(
config.embed_dim, config.latent_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1)
)
self.spatial_scale_factor = 2 ** (len(config.channel_multiplier) - 1)
self.eval() # Emu3's VQ model is frozen
self.post_init()
def encode(self, pixel_values: torch.Tensor, image_sizes: torch.Tensor):
is_image = pixel_values.ndim == 4
if is_image:
temporal = self.config.temporal_downsample_factor
batch_size, channels, height, width = pixel_values.shape
pixel_values = pixel_values.unsqueeze(1).repeat(1, temporal, 1, 1, 1)
else:
batch_size, temporal, channels, height, width = pixel_values.shape
hidden_states = self.encoder(pixel_values)
# b t c h w -> b c t h w
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
hidden_states = self.quant_conv(hidden_states)
# b c t h w -> b t c h w
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
codes = self.quantize(hidden_states)
image_tokens = codes.squeeze(1) if is_image else codes
image_tokens = [
single_image[: int(size[0] / self.vision_spatial_factor), : int(size[1] / self.vision_spatial_factor)]
for single_image, size in zip(image_tokens, image_sizes)
]
return image_tokens
def decode(self, hidden_states: torch.Tensor):
is_image = hidden_states.ndim == 3
if is_image:
hidden_states = hidden_states.unsqueeze(1)
batch_size, temporal, height, width = hidden_states.shape
quant = self.quantize.embedding(hidden_states.flatten())
channels = quant.shape[-1]
quant = quant.view(batch_size, temporal, height, width, channels).permute(0, 4, 1, 2, 3).contiguous()
post_quant = self.post_quant_conv(quant)
quant = quant.permute(0, 2, 1, 3, 4)
post_quant = post_quant.permute(0, 2, 1, 3, 4)
video = self.decoder(post_quant, quant)
video = video.reshape(
batch_size,
temporal * self.config.temporal_downsample_factor,
self.config.out_channels,
height * self.spatial_scale_factor,
width * self.spatial_scale_factor,
)
return video[:, 0] if is_image else video
class Emu3ImageVocabularyMapping:
"""
A class for mapping discrete image tokens from VQGAN to BPE tokens.
"""
def __init__(self, vocab_map):
self.vocab_map = vocab_map
self.eol_token_id = vocab_map.get("<|extra_200|>")
self.image_token_id = vocab_map.get("<image>")
@cached_property
def image_tokens(self):
return sorted([val for name, val in self.vocab_map.items() if name.startswith("<|visual token")])
@cached_property
def image_tokens_str(self):
return sorted([name for name, val in self.vocab_map.items() if name.startswith("<|visual token")])
@cached_property
def img2bpe(self):
return {int(token[-8:-2]): self.vocab_map[token] for token in self.image_tokens_str}
@cached_property
def bpe2img(self):
return {v: k for k, v in self.img2bpe.items()}
@cached_property
def bpe2img_mapping_tensor(self):
mapping = torch.zeros(max(self.bpe2img.keys()) + 1, dtype=torch.int)
for k, v in self.bpe2img.items():
mapping[k] = v
return mapping
@cached_property
def img2bpe_mapping_tensor(self):
mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int)
for k, v in self.img2bpe.items():
mapping[k] = v
return mapping
def convert_img2bpe(self, img_batch: list[torch.Tensor]) -> torch.Tensor:
device = img_batch.device
eol_row = torch.ones((img_batch.shape[0], 1), dtype=torch.int) * self.eol_token_id
img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")]
img_tokens = torch.cat([img_tokens, eol_row], dim=-1)
return img_tokens.to(device)
def convert_bpe2img(self, img_batch: torch.Tensor) -> torch.Tensor:
device = img_batch.device
img_batch = img_batch[..., :-1] # remove last row of EOL tokens
img_tokens = self.bpe2img_mapping_tensor[img_batch.to("cpu")]
return img_tokens.to(device)
@auto_docstring
class Emu3PreTrainedModel(PreTrainedModel):
config: Emu3Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = [
"Emu3DecoderLayer",
]
_skip_keys_device_placement = ["past_key_values", "causal_mask"]
_supports_flash_attn = True
_supports_sdpa = True
_can_compile_fullgraph = True
_supports_param_buffer_assignment = False
_supports_flex_attn = True
_supports_attention_backend = True
class Emu3RotaryEmbedding(nn.Module):
def __init__(self, config: Emu3Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
@auto_docstring
class Emu3TextModel(Emu3PreTrainedModel):
_can_record_outputs = {
"hidden_states": Emu3DecoderLayer,
"attentions": Emu3Attention,
}
def __init__(self, config: Emu3Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Emu3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Emu3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Emu3RotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
@check_model_inputs
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds: torch.Tensor = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position: torch.Tensor = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
hidden_states = inputs_embeds
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
hidden_states = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
)
@auto_docstring
class Emu3ForCausalLM(Emu3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
config: Emu3TextConfig
def __init__(self, config):
super().__init__(config)
self.model = Emu3TextModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> CausalLMOutputWithPast:
r"""
Example:
```python
>>> from transformers import Emu3Processor, Emu3ForConditionalGeneration
>>> import torch
>>> import requests
>>> from PIL import Image
>>> model = Emu3ForCausalLM.from_pretrained("BAAI/Emu3-Chat-hf", torch_dtype=torch.bfloat16)
>>> processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf")
>>> inputs = processor(text=["Can you write me a poem about winter."], return_tensors="pt").to(model.device)
>>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
>>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
```"""
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class Emu3Model(Emu3PreTrainedModel):
_checkpoint_conversion_mapping = {"text_model.model": "text_model"}
def __init__(self, config):
super().__init__(config)
self.text_model = Emu3TextModel._from_config(config.text_config)
self.vqmodel = Emu3VQVAE(config.vq_config)
self.vocabulary_mapping = Emu3ImageVocabularyMapping(config.vocabulary_map)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.text_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.text_model.set_input_embeddings(value)
def set_decoder(self, decoder):
self.text_model = decoder
def get_decoder(self):
return self.text_model
def get_image_tokens(self, pixel_values: torch.FloatTensor, image_sizes: torch.LongTensor):
"""
Tokenizes images into discrete tokens with VQGAN module. Converts
obtained image tokens into BPE tokens and wraps with "boi" and "eoi"
special tokens.
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
The tensors corresponding to the input images.
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`):
The sizes of the images in the batch, being (height, width) for each image.
"""
image_tokens_list = self.vqmodel.encode(pixel_values, image_sizes)
bpe_tokens_list = [self.vocabulary_mapping.convert_img2bpe(tokens).flatten() for tokens in image_tokens_list]
bpe_tokens = torch.cat(bpe_tokens_list)
return bpe_tokens
def get_image_features(self, pixel_values: torch.FloatTensor, image_sizes: torch.LongTensor):
"""
Tokenizes images into discrete tokens with VQGAN module and embeds
them with text embeddings layer
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
The tensors corresponding to the input images.
"""
image_tokens = self.get_image_tokens(pixel_values, image_sizes)
split_sizes = [
(height // self.vqmodel.vision_spatial_factor) * (width // self.vqmodel.vision_spatial_factor + 1)
for height, width in image_sizes
]
image_features = self.get_input_embeddings()(image_tokens)
image_features = torch.split(image_features, split_sizes)
return image_features
@torch.no_grad
def decode_image_tokens(self, image_tokens: torch.LongTensor, height: int, width: int):
"""
Decodes generated image tokens from language model to continuous pixel values
with VQGAN module via upsampling.
Args:
image_tokens (`torch.LongTensor` of shape `(batch_size, num_of_tokens)`):
The tensors corresponding to the input images.
height (`int`):
Height of the generated image before upsampling.
width (`int`):
Width of the generated image before upsampling.
"""
sequences = image_tokens[:, :-3].view(-1, height, width + 1)
image_tokens = self.vocabulary_mapping.convert_bpe2img(sequences)
image = self.vqmodel.decode(image_tokens)
return image
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
image_sizes: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, CausalLMOutputWithPast]:
r"""
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`):
The sizes of the images in the batch, being (height, width) for each image. Image sizes can be obtained using
[`AutoImageProcessor`]. See [`Emu3ImageProcessor.__call__`] for details ([]`Emu3Processor`] uses
[`Emu3ImageProcessor`] for processing images).
"""
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
if pixel_values is not None:
image_embeds = self.get_image_features(pixel_values, image_sizes)
image_embeds = torch.cat(image_embeds, dim=0)
if input_ids is None:
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(self.vocabulary_mapping.image_token_id, dtype=torch.long, device=inputs_embeds.device)
)
special_image_mask = special_image_mask.all(-1)
else:
special_image_mask = input_ids == self.vocabulary_mapping.image_token_id
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_embeds)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.text_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
return outputs
class Emu3ForConditionalGeneration(Emu3PreTrainedModel, GenerationMixin):
base_model_prefix = ""
_tied_weights_keys = ["lm_head.weight"]
_checkpoint_conversion_mapping = {
"^text_model.model": "model.text_model",
"^vqmodel": "model.vqmodel",
"^text_model.lm_head": "lm_head",
}
def __init__(self, config):
super().__init__(config)
self.model = Emu3Model(config)
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
def get_output_embeddings(self) -> nn.Module:
return self.lm_head
def set_decoder(self, decoder):
self.model.set_decoder(decoder)
def get_decoder(self):
return self.model.get_decoder()
# Make modules available throught conditional class for BC
@property
def text_model(self):
return self.model.text_model
@property
def vqmodel(self):
return self.model.vqmodel
@property
def vocabulary_mapping(self):
return self.model.vocabulary_mapping
def decode_image_tokens(self, **kwargs):
return self.model.decode_image_tokens(**kwargs)
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
image_sizes: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, CausalLMOutputWithPast]:
r"""
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`):
The sizes of the images in the batch, being (height, width) for each image. Image sizes can be obtained using
[`AutoImageProcessor`]. See [`Emu3ImageProcessor.__call__`] for details ([]`Emu3Processor`] uses
[`Emu3ImageProcessor`] for processing images).
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:
```python
>>> from transformers import Emu3Processor, Emu3ForConditionalGeneration
>>> import torch
>>> import requests
>>> from PIL import Image
>>> model = Emu3ForConditionalGeneration.from_pretrained("BAAI/Emu3-Chat-hf", torch_dtype=torch.bfloat16)
>>> processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf")
>>> conversation = [
... {
... "role": "system",
... "content": [
... {"type": "text", "text": "You are a helpful assistant."},
... ],
... },
... {
... "role": "user",
... "content": [
... {"type": "image"},
... {"type": "text", "text": "Please describe the image."},
... ],
... },
... ]
>>> prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
>>> image = Image.open(requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw)
>>> inputs = processor(images=[image], text=[prompt], return_tensors="pt").to(model.device, torch.bfloat16)
>>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
>>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
```"""
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs
)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
pixel_values=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
pixel_values=pixel_values,
use_cache=use_cache,
**kwargs,
)
if cache_position[0] != 0:
model_inputs["pixel_values"] = None
return model_inputs
__all__ = [
"Emu3ForConditionalGeneration",
"Emu3ForCausalLM",
"Emu3TextModel",
"Emu3PreTrainedModel",
"Emu3VQVAE",
"Emu3Model",
]