team-10/venv/Lib/site-packages/transformers/models/granitemoehybrid/configuration_granitemoehybrid.py
2025-08-02 02:00:33 +02:00

256 lines
12 KiB
Python

# coding=utf-8
# Copyright 2025 IBM and the HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GraniteMoeHybrid model configuration"""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
logger = logging.get_logger(__name__)
class GraniteMoeHybridConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GraniteMoeHybridConfig`]. It is used to
instantiate an GraniteMoeHybrid model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the GraniteMoeHybrid model. Defines the number of different tokens that
can be represented by the `inputs_ids` passed when calling [`GraniteMoeHybridModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Only relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
embedding_multiplier (`float`, *optional*, defaults to 1.0): embedding multiplier.
logits_scaling (`float`, *optional*, defaults to 1.0): divisor for output logits.
residual_multiplier (`float`, *optional*, defaults to 1.0): residual multiplier.
attention_multiplier (`float`, *optional*, defaults to 1.0): attention multiplier.
num_local_experts (`int`, *optional*, defaults to 8): total number of experts.
num_experts_per_tok (`int`, *optional*, defaults to 2): number of experts per token.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabling this will also
allow the model to output the auxiliary loss.
router_aux_loss_coef (`float`, *optional*, defaults to 0.001): router auxialiary loss coefficient
shared_intermediate_size (`int`, *optional*, defaults to 1024): intermediate size for shared experts.
position_embedding_type (`str`, *optional*): Positional embedding
type to be used; defaults to None. Allowed options: `[None, "rope"]`
layer_types (`List`, *optional*): list of strings to be used as layer types.
Allowed choices: "mamba", "attention".
mamba_n_heads (`int`, *optional*, defaults to 128):
The number of mamba heads used.
mamba_n_groups (`int`, *optional*, defaults to 1):
The number of the mamba groups used.
mamba_d_state (`int`, *optional*, defaults to 256):
The dimension the mamba latent state space.
mamba_d_head (`int`, *optional*, defaults to `"auto"`):
Head embedding dimension size.
mamba_d_conv (`int`, *optional*, defaults to 4):
The size of the mamba convolution kernel.
mamba_expand (`int`, *optional*, defaults to 2):
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size.
mamba_chunk_size (`int`, *optional*, defaults to 256):
The chunks in which to break the sequence when doing prefill/training.
mamba_conv_bias (`bool`, *optional*, defaults to `True`):
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
mamba_proj_bias (`bool`, *optional*, defaults to `False`):
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"])
of the mamba mixer block.
```python
>>> from transformers import GraniteMoeHybridModel, GraniteMoeHybridConfig
>>> # Initializing a GraniteMoeHybrid config
>>> configuration = GraniteMoeHybridConfig()
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "granitemoehybrid"
attribute_map = {
"layers_block_type": "layer_types",
}
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
embedding_multiplier=1.0,
logits_scaling=1.0,
residual_multiplier=1.0,
attention_multiplier=1.0,
num_local_experts=8,
num_experts_per_tok=2,
output_router_logits=False,
router_aux_loss_coef=0.001,
shared_intermediate_size=1024,
position_embedding_type=None,
layer_types=None,
mamba_n_heads=128,
mamba_n_groups=1,
mamba_d_state=256,
mamba_d_head="auto",
mamba_d_conv=4,
mamba_expand=2,
mamba_chunk_size=256,
mamba_conv_bias=True,
mamba_proj_bias=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.embedding_multiplier = embedding_multiplier
self.logits_scaling = logits_scaling
self.residual_multiplier = residual_multiplier
self.attention_multiplier = attention_multiplier
self.attention_dropout = attention_dropout
self.num_local_experts = num_local_experts
self.num_experts_per_tok = num_experts_per_tok
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.shared_intermediate_size = shared_intermediate_size
self.position_embedding_type = position_embedding_type
mamba_intermediate = mamba_expand * hidden_size
if layer_types is not None and any(layer_type not in ["mamba", "attention"] for layer_type in layer_types):
raise ValueError("layer_types must be a list strings in [`mamba` `attention`]")
if mamba_intermediate % mamba_n_heads != 0:
raise ValueError("mamba_n_heads must divide mamba_expand * hidden_size")
# for the mamba_v2, must satisfy the following
if mamba_d_head == "auto":
mamba_d_head = mamba_intermediate // mamba_n_heads
if mamba_d_head * mamba_n_heads != mamba_intermediate:
raise ValueError("The dimensions for the Mamba head state do not match the model intermediate_size")
self.mamba_n_heads = mamba_n_heads
self.mamba_d_head = mamba_d_head
self.mamba_n_groups = mamba_n_groups
self.mamba_d_state = mamba_d_state
self.mamba_d_conv = mamba_d_conv
self.mamba_chunk_size = mamba_chunk_size
self.mamba_conv_bias = mamba_conv_bias
self.mamba_proj_bias = mamba_proj_bias
self.mamba_expand = mamba_expand
self.layer_types = layer_types
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
if self.position_embedding_type == "rope":
rope_config_validation(self)
# overwrite the function to use in `HybridMambaAttentionDynamicCache`
@property
def layers_block_type(self):
return self.layer_types if self.layer_types else ["mamba"] * self.num_hidden_layers
__all__ = ["GraniteMoeHybridConfig"]