256 lines
12 KiB
Python
256 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 IBM and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""GraniteMoeHybrid model configuration"""
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...modeling_rope_utils import rope_config_validation
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class GraniteMoeHybridConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`GraniteMoeHybridConfig`]. It is used to
|
|
instantiate an GraniteMoeHybrid model according to the specified arguments, defining the model architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 32000):
|
|
Vocabulary size of the GraniteMoeHybrid model. Defines the number of different tokens that
|
|
can be represented by the `inputs_ids` passed when calling [`GraniteMoeHybridModel`]
|
|
hidden_size (`int`, *optional*, defaults to 4096):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 11008):
|
|
Dimension of the MLP representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
|
Number of hidden layers in the Transformer decoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
|
Number of attention heads for each attention layer in the Transformer decoder.
|
|
num_key_value_heads (`int`, *optional*):
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
|
by meanpooling all the original heads within that group. For more details, check out [this
|
|
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
|
|
`num_attention_heads`.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
|
The non-linear activation function (function or string) in the decoder.
|
|
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
|
The maximum sequence length that this model might ever be used with.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
|
Only relevant if `config.is_decoder=True`.
|
|
pad_token_id (`int`, *optional*):
|
|
Padding token id.
|
|
bos_token_id (`int`, *optional*, defaults to 1):
|
|
Beginning of stream token id.
|
|
eos_token_id (`int`, *optional*, defaults to 2):
|
|
End of stream token id.
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
Whether to tie weight embeddings
|
|
rope_theta (`float`, *optional*, defaults to 10000.0):
|
|
The base period of the RoPE embeddings.
|
|
rope_scaling (`Dict`, *optional*):
|
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
|
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
|
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
|
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
|
these scaling strategies behave:
|
|
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
|
experimental feature, subject to breaking API changes in future versions.
|
|
attention_bias (`bool`, *optional*, defaults to `False`):
|
|
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
embedding_multiplier (`float`, *optional*, defaults to 1.0): embedding multiplier.
|
|
logits_scaling (`float`, *optional*, defaults to 1.0): divisor for output logits.
|
|
residual_multiplier (`float`, *optional*, defaults to 1.0): residual multiplier.
|
|
attention_multiplier (`float`, *optional*, defaults to 1.0): attention multiplier.
|
|
num_local_experts (`int`, *optional*, defaults to 8): total number of experts.
|
|
num_experts_per_tok (`int`, *optional*, defaults to 2): number of experts per token.
|
|
output_router_logits (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the router logits should be returned by the model. Enabling this will also
|
|
allow the model to output the auxiliary loss.
|
|
router_aux_loss_coef (`float`, *optional*, defaults to 0.001): router auxialiary loss coefficient
|
|
shared_intermediate_size (`int`, *optional*, defaults to 1024): intermediate size for shared experts.
|
|
position_embedding_type (`str`, *optional*): Positional embedding
|
|
type to be used; defaults to None. Allowed options: `[None, "rope"]`
|
|
layer_types (`List`, *optional*): list of strings to be used as layer types.
|
|
Allowed choices: "mamba", "attention".
|
|
mamba_n_heads (`int`, *optional*, defaults to 128):
|
|
The number of mamba heads used.
|
|
mamba_n_groups (`int`, *optional*, defaults to 1):
|
|
The number of the mamba groups used.
|
|
mamba_d_state (`int`, *optional*, defaults to 256):
|
|
The dimension the mamba latent state space.
|
|
mamba_d_head (`int`, *optional*, defaults to `"auto"`):
|
|
Head embedding dimension size.
|
|
mamba_d_conv (`int`, *optional*, defaults to 4):
|
|
The size of the mamba convolution kernel.
|
|
mamba_expand (`int`, *optional*, defaults to 2):
|
|
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size.
|
|
mamba_chunk_size (`int`, *optional*, defaults to 256):
|
|
The chunks in which to break the sequence when doing prefill/training.
|
|
mamba_conv_bias (`bool`, *optional*, defaults to `True`):
|
|
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
|
|
mamba_proj_bias (`bool`, *optional*, defaults to `False`):
|
|
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"])
|
|
of the mamba mixer block.
|
|
```python
|
|
>>> from transformers import GraniteMoeHybridModel, GraniteMoeHybridConfig
|
|
|
|
>>> # Initializing a GraniteMoeHybrid config
|
|
>>> configuration = GraniteMoeHybridConfig()
|
|
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "granitemoehybrid"
|
|
attribute_map = {
|
|
"layers_block_type": "layer_types",
|
|
}
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=32000,
|
|
hidden_size=4096,
|
|
intermediate_size=11008,
|
|
num_hidden_layers=32,
|
|
num_attention_heads=32,
|
|
num_key_value_heads=None,
|
|
hidden_act="silu",
|
|
max_position_embeddings=2048,
|
|
initializer_range=0.02,
|
|
rms_norm_eps=1e-6,
|
|
use_cache=True,
|
|
pad_token_id=None,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
tie_word_embeddings=False,
|
|
rope_theta=10000.0,
|
|
rope_scaling=None,
|
|
attention_bias=False,
|
|
attention_dropout=0.0,
|
|
embedding_multiplier=1.0,
|
|
logits_scaling=1.0,
|
|
residual_multiplier=1.0,
|
|
attention_multiplier=1.0,
|
|
num_local_experts=8,
|
|
num_experts_per_tok=2,
|
|
output_router_logits=False,
|
|
router_aux_loss_coef=0.001,
|
|
shared_intermediate_size=1024,
|
|
position_embedding_type=None,
|
|
layer_types=None,
|
|
mamba_n_heads=128,
|
|
mamba_n_groups=1,
|
|
mamba_d_state=256,
|
|
mamba_d_head="auto",
|
|
mamba_d_conv=4,
|
|
mamba_expand=2,
|
|
mamba_chunk_size=256,
|
|
mamba_conv_bias=True,
|
|
mamba_proj_bias=False,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
|
|
# for backward compatibility
|
|
if num_key_value_heads is None:
|
|
num_key_value_heads = num_attention_heads
|
|
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.use_cache = use_cache
|
|
self.rope_theta = rope_theta
|
|
self.rope_scaling = rope_scaling
|
|
self.attention_bias = attention_bias
|
|
self.embedding_multiplier = embedding_multiplier
|
|
self.logits_scaling = logits_scaling
|
|
self.residual_multiplier = residual_multiplier
|
|
self.attention_multiplier = attention_multiplier
|
|
self.attention_dropout = attention_dropout
|
|
self.num_local_experts = num_local_experts
|
|
self.num_experts_per_tok = num_experts_per_tok
|
|
self.output_router_logits = output_router_logits
|
|
self.router_aux_loss_coef = router_aux_loss_coef
|
|
self.shared_intermediate_size = shared_intermediate_size
|
|
self.position_embedding_type = position_embedding_type
|
|
|
|
mamba_intermediate = mamba_expand * hidden_size
|
|
|
|
if layer_types is not None and any(layer_type not in ["mamba", "attention"] for layer_type in layer_types):
|
|
raise ValueError("layer_types must be a list strings in [`mamba` `attention`]")
|
|
|
|
if mamba_intermediate % mamba_n_heads != 0:
|
|
raise ValueError("mamba_n_heads must divide mamba_expand * hidden_size")
|
|
|
|
# for the mamba_v2, must satisfy the following
|
|
if mamba_d_head == "auto":
|
|
mamba_d_head = mamba_intermediate // mamba_n_heads
|
|
|
|
if mamba_d_head * mamba_n_heads != mamba_intermediate:
|
|
raise ValueError("The dimensions for the Mamba head state do not match the model intermediate_size")
|
|
|
|
self.mamba_n_heads = mamba_n_heads
|
|
self.mamba_d_head = mamba_d_head
|
|
self.mamba_n_groups = mamba_n_groups
|
|
self.mamba_d_state = mamba_d_state
|
|
self.mamba_d_conv = mamba_d_conv
|
|
self.mamba_chunk_size = mamba_chunk_size
|
|
self.mamba_conv_bias = mamba_conv_bias
|
|
self.mamba_proj_bias = mamba_proj_bias
|
|
self.mamba_expand = mamba_expand
|
|
self.layer_types = layer_types
|
|
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
if self.position_embedding_type == "rope":
|
|
rope_config_validation(self)
|
|
|
|
# overwrite the function to use in `HybridMambaAttentionDynamicCache`
|
|
@property
|
|
def layers_block_type(self):
|
|
return self.layer_types if self.layer_types else ["mamba"] * self.num_hidden_layers
|
|
|
|
|
|
__all__ = ["GraniteMoeHybridConfig"]
|