team-10/venv/Lib/site-packages/transformers/models/idefics3/modeling_idefics3.py
2025-08-02 02:00:33 +02:00

1041 lines
47 KiB
Python

# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Idefics3 model."""
from dataclasses import dataclass
from typing import Callable, Optional, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutput, ModelOutput
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging
from ..auto import AutoModel
from .configuration_idefics3 import Idefics3Config, Idefics3VisionConfig
logger = logging.get_logger(__name__)
@dataclass
@auto_docstring(
custom_intro="""
Base class for Idefics3 model's outputs that may also contain a past key/values (to speed up sequential decoding).
"""
)
class Idefics3BaseModelOutputWithPast(ModelOutput):
r"""
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
hidden_size)` is output.
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder
"""
last_hidden_state: Optional[torch.FloatTensor] = None
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None
hidden_states: Optional[tuple[torch.FloatTensor]] = None
attentions: Optional[tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[tuple[torch.FloatTensor]] = None
@dataclass
@auto_docstring(
custom_intro="""
Base class for Idefics causal language model (or autoregressive) outputs.
"""
)
class Idefics3CausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[list[torch.FloatTensor]] = None
hidden_states: Optional[tuple[torch.FloatTensor]] = None
attentions: Optional[tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[tuple[torch.FloatTensor]] = None
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2VisionEmbeddings with Idefics2->Idefics3
class Idefics3VisionEmbeddings(nn.Module):
"""
This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings` to enable images of variable
resolution.
The modifications are adapted from [Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution](https://huggingface.co/papers/2307.06304)
which allows treating images in their native aspect ratio and without the need to resize them to the same
fixed size. In particular, we start from the original pre-trained SigLIP model
(which uses images of fixed-size square images) and adapt it by training on images of variable resolutions.
"""
def __init__(self, config: Idefics3VisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.num_patches_per_side = self.image_size // self.patch_size
self.num_patches = self.num_patches_per_side**2
self.num_positions = self.num_patches
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor:
batch_size, _, max_im_h, max_im_w = pixel_values.shape
patch_embeds = self.patch_embedding(pixel_values)
embeddings = patch_embeds.flatten(2).transpose(1, 2)
max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
position_ids = torch.full(size=(batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0)
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
nb_patches_h = p_attn_mask[:, 0].sum()
nb_patches_w = p_attn_mask[0].sum()
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
position_ids = position_ids.to(self.position_embedding.weight.device)
embeddings = embeddings + self.position_embedding(position_ids)
return embeddings
# Copied from transformers.models.siglip.modeling_siglip.eager_attention_forward
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
# Copied from transformers.models.siglip.modeling_siglip.SiglipAttention with Siglip->Idefics3Vision
class Idefics3VisionAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
# Ignore copy
self.is_causal = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, seq_length, embed_dim = hidden_states.shape
queries = self.q_proj(hidden_states)
keys = self.k_proj(hidden_states)
values = self.v_proj(hidden_states)
queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
queries,
keys,
values,
attention_mask,
is_causal=self.is_causal,
scaling=self.scale,
dropout=0.0 if not self.training else self.dropout,
)
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
# Copied from transformers.models.siglip.modeling_siglip.SiglipMLP with Siglip->Idefics3Vision
class Idefics3VisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class Idefics3SimpleMLP(nn.Module):
def __init__(self, config):
super().__init__()
input_size = config.vision_config.hidden_size * (config.scale_factor**2)
output_size = config.text_config.hidden_size
self.proj = nn.Linear(input_size, output_size, bias=False)
def forward(self, x):
return self.proj(x)
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2EncoderLayer with Idefics2->Idefics3
class Idefics3EncoderLayer(GradientCheckpointingLayer):
def __init__(self, config: Idefics3VisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = Idefics3VisionAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = Idefics3VisionMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
# Copied from transformers.models.siglip.modeling_siglip.SiglipEncoderLayer.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.siglip.modeling_siglip.SiglipEncoder with Siglip->Idefics3
class Idefics3Encoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`Idefics3EncoderLayer`].
Args:
config: Idefics3Config
"""
def __init__(self, config: Idefics3Config):
super().__init__()
self.config = config
self.layers = nn.ModuleList([Idefics3EncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
# Ignore copy
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Idefics3
class Idefics3RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Idefics3RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class Idefics3Connector(nn.Module):
def __init__(self, config):
super().__init__()
self.scale_factor = config.scale_factor
self.modality_projection = Idefics3SimpleMLP(config)
def pixel_shuffle(self, x, scale_factor=2):
bsz, seq, embed_dim = x.size()
height = width = int(seq**0.5)
x = x.view(bsz, height, width, embed_dim)
x = x.view(bsz, height, int(width / scale_factor), embed_dim * scale_factor)
x = x.permute(0, 2, 1, 3)
x = x.reshape(bsz, int(width / scale_factor), int(height / scale_factor), embed_dim * (scale_factor**2))
x = x.permute(0, 2, 1, 3)
x = x.reshape(bsz, int(seq / (scale_factor**2)), embed_dim * (scale_factor**2))
return x
def forward(self, image_hidden_states):
image_hidden_states = self.pixel_shuffle(image_hidden_states, self.scale_factor)
image_hidden_states = self.modality_projection(image_hidden_states)
return image_hidden_states
@auto_docstring
class Idefics3PreTrainedModel(PreTrainedModel):
config: Idefics3Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Idefics3VisionAttention", "Idefics3DecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_attention_backend = True
def _init_weights(self, module):
std = getattr(self.config, "initializer_range", self.config.get_text_config().initializer_range)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
elif isinstance(module, Idefics3RMSNorm):
module.weight.data.fill_(1.0)
@auto_docstring(
custom_intro="""
The Idefics3 Vision Transformer Model outputting raw image embedding.
"""
)
class Idefics3VisionTransformer(Idefics3PreTrainedModel):
config: Idefics3VisionConfig
_supports_sdpa = True
_supports_flash_attn = True
_supports_flex_attn = True
def __init__(self, config: Idefics3VisionConfig):
super().__init__(config)
embed_dim = config.hidden_size
self.embeddings = Idefics3VisionEmbeddings(config)
self.encoder = Idefics3Encoder(config)
self.patch_size = config.patch_size
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2VisionTransformer.get_input_embeddings
def get_input_embeddings(self):
return self.embeddings
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2VisionTransformer.set_input_embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
pixel_values,
patch_attention_mask: Optional[torch.BoolTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size = pixel_values.size(0)
if patch_attention_mask is None:
patch_size = self.patch_size
patch_attention_mask = torch.ones(
(
batch_size,
pixel_values.size(2) // patch_size,
pixel_values.size(3) // patch_size,
)
)
patch_attention_mask = patch_attention_mask.to(dtype=torch.bool, device=pixel_values.device)
hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
patch_attention_mask = patch_attention_mask.view(batch_size, -1)
# The call to `_upad_input` in `_flash_attention_forward` is expensive
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence
if not torch.any(~patch_attention_mask):
patch_attention_mask = None
elif not self._use_flash_attention_2:
patch_attention_mask = _prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=patch_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.post_layernorm(last_hidden_state)
if not return_dict:
return (last_hidden_state,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=last_hidden_state,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@auto_docstring(
custom_intro="""
Idefics3 model consisting of a SIGLIP vision encoder and Llama3 language decoder
"""
)
class Idefics3Model(Idefics3PreTrainedModel):
def __init__(self, config: Idefics3Config):
super().__init__(config)
self.padding_idx = self.config.text_config.pad_token_id
self.vocab_size = self.config.text_config.vocab_size
self.vision_model = Idefics3VisionTransformer._from_config(config.vision_config)
self.connector = Idefics3Connector(config)
self.text_model = AutoModel.from_config(config.text_config)
self.image_seq_len = int(
((config.vision_config.image_size // config.vision_config.patch_size) ** 2) / (config.scale_factor**2)
)
self.image_token_id = self.config.image_token_id
self._use_flash_attention_2 = config.text_config._attn_implementation == "flash_attention_2"
self.post_init()
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2Model.enable_input_require_grads
def enable_input_require_grads(self):
"""
Enables the gradients for the input embeddings.
This is useful for lora when using gradient checkpointing.
c.f. https://github.com/huggingface/peft/issues/1402#issuecomment-1913675032
Override to set output.requires_grad = True for both the decoder's and vision model's embeddings.
"""
def get_lowest_module(module):
if len(list(module.children())) == 0:
# If the module has no children, it is a leaf module (e.g., Linear, Conv2d, etc.)
return module
else:
# Recursively call the function on each child module
return get_lowest_module(list(module.children())[0])
def make_inputs_require_grads(module, input, output):
output.requires_grad_(True)
self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)
self._vision_require_grads_hook = get_lowest_module(self.vision_model).register_forward_hook(
make_inputs_require_grads
)
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2Model.disable_input_require_grads
def disable_input_require_grads(self):
self._text_require_grads_hook.remove()
self._vision_require_grads_hook.remove()
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2Model.get_input_embeddings
def get_input_embeddings(self):
return self.text_model.get_input_embeddings()
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2Model.set_input_embeddings
def set_input_embeddings(self, value):
self.text_model.set_input_embeddings(value)
def inputs_merger(
self,
input_ids: torch.LongTensor,
inputs_embeds: Optional[torch.Tensor],
image_hidden_states: Optional[torch.Tensor],
):
"""
This method aims at merging the token embeddings with the image hidden states into one single sequence of vectors that are fed to the transformer LM.
The merging happens as follows:
- The text token sequence is: `tok_1 tok_2 tok_3 <fake_token_around_image> <image> <image> ... <image> <fake_token_around_image> tok_4`.
- We get the image hidden states for the image through the vision encoder and that hidden state, after a pixel shuffle operation, is then projected into the text embedding space.
We thus have a sequence of image hidden states of size (1, image_seq_len, hidden_dim), where 1 is for batch_size of 1 image and hidden_dim is the hidden_dim of the LM transformer.
- The merging happens so that we obtain the following sequence: `vector_tok_1 vector_tok_2 vector_tok_3 vector_fake_tok_around_image {sequence of image_seq_len image hidden states} vector_fake_toke_around_image vector_tok_4`. That sequence is fed to the LM.
- To fit the format of that sequence, `input_ids`, `input_embeds`, `attention_mask` are all 3 adapted to insert the image hidden states.
"""
if input_ids is None:
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
)
special_image_mask = special_image_mask.all(-1)
else:
special_image_mask = input_ids == self.config.image_token_id
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
image_hidden_states = image_hidden_states.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_hidden_states)
return inputs_embeds
def get_image_features(self, pixel_values: torch.FloatTensor, pixel_attention_mask: torch.LongTensor = None):
"""
Encodes images into continuous embeddings that can be forwarded to the language model.
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
The tensors corresponding to the input images.
pixel_attention_mask (`torch.LongTensor`, *optional*):
The attention mask indicating padded regions in the image.
"""
batch_size, num_images, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.to(dtype=self.dtype) # fp16 compatibility
pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:])
# Remove padding images - padding images are full 0.
nb_values_per_image = pixel_values.shape[1:].numel()
real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image
pixel_values = pixel_values[real_images_inds].contiguous()
# Handle the vision attention mask
if pixel_attention_mask is None:
pixel_attention_mask = torch.ones(
size=(pixel_values.size(0), pixel_values.size(2), pixel_values.size(3)),
dtype=torch.bool,
device=pixel_values.device,
)
else:
# Remove padding images from the mask
pixel_attention_mask = pixel_attention_mask.view(batch_size * num_images, *pixel_attention_mask.shape[2:])
pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous()
patch_size = self.config.vision_config.patch_size
patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size)
patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size)
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
# Get sequence from the vision encoder
image_hidden_states = self.vision_model(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
image_hidden_states.last_hidden_state
# Modality projection & resampling
image_hidden_states = self.connector(image_hidden_states.last_hidden_state)
return image_hidden_states
@can_return_tuple
@auto_docstring(
custom_intro="""
Inputs fed to the model can have an arbitrary number of images. To account for this, pixel_values fed to
the model have image padding -> (batch_size, max_num_images, 3, max_heights, max_widths) where
max_num_images is the maximum number of images among the batch_size samples in the batch.
Padding images are not needed beyond padding the pixel_values at the entrance of the model.
For efficiency, we only pass through the vision_model's forward the real images by
discarding the padding images i.e. pixel_values of size (image_batch_size, 3, height, width) where
image_batch_size would be 7 when num_images_per_sample=[1, 3, 1, 2] and max_num_images would be 3.
"""
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
pixel_attention_mask: Optional[torch.BoolTensor] = None,
image_hidden_states: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Union[tuple, Idefics3BaseModelOutputWithPast]:
r"""
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
Mask to avoid performing attention on padding pixel indices.
image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
The hidden states of the image encoder after modality projection.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.training and self.text_model.gradient_checkpointing and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# retrieve input_ids and inputs_embeds
if input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if inputs_embeds is None:
inputs_embeds = self.text_model.get_input_embeddings()(input_ids).to(self.device)
# START VISUAL INPUTS INTEGRATION
if pixel_values is not None and image_hidden_states is not None:
raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
elif pixel_values is not None:
image_hidden_states = self.get_image_features(pixel_values, pixel_attention_mask)
elif image_hidden_states is not None:
image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device)
if image_hidden_states is not None:
# When we generate, we don't want to replace the potential image_token_id that we generated by images
# that simply don't exist
inputs_embeds = self.inputs_merger(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
image_hidden_states=image_hidden_states,
)
outputs = self.text_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
return_dict=True,
**kwargs,
)
return Idefics3BaseModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_hidden_states,
)
@auto_docstring(
custom_intro="""
The Idefics3 Model with a language modeling head. It is made up a SigLIP vision encoder, with a language modeling head on top.
"""
)
class Idefics3ForConditionalGeneration(Idefics3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.__init__ with Idefics2->Idefics3
def __init__(self, config):
super().__init__(config)
self.model = Idefics3Model(config)
self.image_token_id = self.config.image_token_id
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
self.vocab_size = config.text_config.vocab_size
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.enable_input_require_grads
def enable_input_require_grads(self):
"""
Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
the model weights fixed.
"""
def make_inputs_require_grads(module, input, output):
output.requires_grad_(True)
self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)
self._vision_require_grads_hook = self.model.vision_model.get_input_embeddings().register_forward_hook(
make_inputs_require_grads
)
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.disable_input_require_grads
def disable_input_require_grads(self):
self._text_require_grads_hook.remove()
self._vision_require_grads_hook.remove()
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.get_input_embeddings
def get_input_embeddings(self):
return self.model.text_model.get_input_embeddings()
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.set_input_embeddings
def set_input_embeddings(self, value):
self.model.text_model.set_input_embeddings(value)
def get_image_features(self, pixel_values: torch.FloatTensor, pixel_attention_mask: torch.LongTensor = None):
return self.model.get_image_features(pixel_values=pixel_values, pixel_attention_mask=pixel_attention_mask)
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
pixel_attention_mask: Optional[torch.BoolTensor] = None,
image_hidden_states: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, Idefics3CausalLMOutputWithPast]:
r"""
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
Mask to avoid performing attention on padding pixel indices.
image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
The hidden states of the image encoder after modality projection.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or `model.image_token_id` (where `model` is your instance of `Idefics3ForConditionalGeneration`).
Tokens with indices set to `model.image_token_id` are ignored (masked), the loss is only
computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:
```python
>>> import requests
>>> import torch
>>> from PIL import Image
>>> from io import BytesIO
>>> from transformers import AutoProcessor, AutoModelForVision2Seq
>>> from transformers.image_utils import load_image
>>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible
>>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
>>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
>>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")
>>> processor = AutoProcessor.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3")
>>> model = AutoModelForVision2Seq.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3", torch_dtype=torch.bfloat16, device_map="auto")
>>> # Create inputs
>>> messages = [
... {
... "role": "user",
... "content": [
... {"type": "image"},
... {"type": "text", "text": "In this image, we can see the city of New York, and more specifically the Statue of Liberty."},
... {"type": "image"},
... {"type": "text", "text": "What can we see in this image?"},
... ]
... },
... {
... "role": "user",
... "content": [
... {"type": "image"},
... {"type": "text", "text": "In which city is that bridge located?"},
... ]
... }
... ]
>>> prompts = [processor.apply_chat_template([message], add_generation_prompt=True) for message in messages]
>>> images = [[image1, image2], [image3]]
>>> inputs = processor(text=prompts, images=images, padding=True, return_tensors="pt").to(model.device)
>>> # Generate
>>> generated_ids = model.generate(**inputs, max_new_tokens=256)
>>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
>>> print(generated_texts[0])
Assistant: There are buildings, trees, lights, and water visible in this image.
>>> print(generated_texts[1])
Assistant: The bridge is in San Francisco.
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
pixel_values=pixel_values,
pixel_attention_mask=pixel_attention_mask,
image_hidden_states=image_hidden_states,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
return_dict=True,
**kwargs,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs
)
return Idefics3CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=outputs.image_hidden_states,
)
# Copied from transformers.models.idefics2.modeling_idefics2.Idefics2ForConditionalGeneration.prepare_inputs_for_generation
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
pixel_values=None,
pixel_attention_mask=None,
image_hidden_states=None,
logits_to_keep=None,
**kwargs,
):
# Overwritten -- there are mutually exclusive inputs (if the logic to make `image_hidden_states` take
# precedence is moved to the model, we can remove this fn)
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
pixel_values=pixel_values,
pixel_attention_mask=pixel_attention_mask,
image_hidden_states=image_hidden_states,
logits_to_keep=logits_to_keep,
**kwargs,
)
if image_hidden_states is not None or cache_position[0] != 0:
model_inputs["pixel_values"] = None
model_inputs["pixel_attention_mask"] = None
return model_inputs
__all__ = ["Idefics3ForConditionalGeneration", "Idefics3PreTrainedModel", "Idefics3Model", "Idefics3VisionTransformer"]