team-10/venv/Lib/site-packages/transformers/models/t5gemma/configuration_t5gemma.py
2025-08-02 02:00:33 +02:00

332 lines
16 KiB
Python

# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/t5gemma/modular_t5gemma.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_t5gemma.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Optional, Union
from ...configuration_utils import PretrainedConfig, layer_type_validation
class T5GemmaModuleConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`T5GemmaModuleModel`]. It is used to instantiate an T5GemmaModule
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the T5GemmaModule-7B.
e.g. [google/t5_gemma_module-7b](https://huggingface.co/google/t5_gemma_module-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the T5GemmaModule model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`T5GemmaModuleModel`]
hidden_size (`int`, *optional*, defaults to 2304):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 9216):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 26):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 4):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
query_pre_attn_scalar (`float`, *optional*, defaults to 256):
scaling factor used on the attention scores
sliding_window (`int`, *optional*, defaults to 4096):
in T5GemmaModule, every other layer uses sliding window attention. This is the size of the sliding window.
layer_types (`list`, *optional*):
Attention pattern for each layer.
final_logit_softcapping (`float`, *optional*, defaults to 30.0):
scaling factor when applying tanh softcapping on the logits.
attn_logit_softcapping (`float`, *optional*, defaults to 50.0):
scaling factor when applying tanh softcapping on the attention scores.
```python
>>> from transformers import T5GemmaModuleModel, T5GemmaModuleConfig
>>> # Initializing a T5GemmaModule t5_gemma_module-7b style configuration
>>> configuration = T5GemmaModuleConfig()
>>> # Initializing a model from the t5_gemma_module-7b style configuration
>>> model = T5GemmaModuleModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "t5_gemma_module"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=256000,
hidden_size=2304,
intermediate_size=9216,
num_hidden_layers=26,
num_attention_heads=8,
num_key_value_heads=4,
head_dim=256,
hidden_activation="gelu_pytorch_tanh",
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
query_pre_attn_scalar=256,
sliding_window=4096,
layer_types=None,
final_logit_softcapping=30.0,
attn_logit_softcapping=50.0,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.hidden_activation = hidden_activation
self.query_pre_attn_scalar = query_pre_attn_scalar
self.sliding_window = sliding_window
self.final_logit_softcapping = final_logit_softcapping
self.attn_logit_softcapping = attn_logit_softcapping
self.layer_types = layer_types
if self.layer_types is None:
self.layer_types = [
"sliding_attention" if bool((i + 1) % 2) else "full_attention" for i in range(self.num_hidden_layers)
]
layer_type_validation(self.layer_types)
class T5GemmaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`T5GemmaModel`]. It is used to instantiate an T5Gemma
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to a hypothetical balanced Gemma2 encoder-decoder model.
e.g. [google/t5gemma-2b-2b-prefixlm-it](https://huggingface.co/google/t5gemma-2b-2b-prefixlm-it)
```python
>>> from transformers import T5GemmaConfig, T5GemmaModel
>>> t5gemma_config = T5GemmaConfig.from_pretrained("google/t5gemma-2b-2b-prefixlm-it")
>>> model = T5GemmaModel(t5gemma_config)
```
Configuration objects inherit from [PretrainedConfig] and can be used to control the model outputs. Read the
documentation from [PretrainedConfig] for more information.
Args:
encoder (`Union[T5GemmaModuleConfig, dict]`, optional, *optional*):
Configuration for the encoder.
decoder (`Union[T5GemmaModuleConfig, dict]`, optional, *optional*):
Configuration for the decoder.
is_encoder_decoder (bool, optional, *optional*, defaults to `True`):
Whether the model is used as an encoder/decoder or not.
dropout_rate (`float`, *optional*, defaults to 0.0):
The ratio for all dropout layers (following T5).
classifier_dropout_rate (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier (following T5).
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for attention.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether tie input and output embeddings.
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the T5Gemma model (the same as Gemma 2).
kwargs (additional keyword arguments, optional, *optional*):
Will be passed to the PretrainedConfig base class.
"""
model_type = "t5gemma"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
# encoder
"encoder.layers.*.self_attn.q_proj": "colwise",
"encoder.layers.*.self_attn.k_proj": "colwise",
"encoder.layers.*.self_attn.v_proj": "colwise",
"encoder.layers.*.self_attn.o_proj": "rowwise",
"encoder.layers.*.mlp.gate_proj": "colwise",
"encoder.layers.*.mlp.up_proj": "colwise",
"encoder.layers.*.mlp.down_proj": "rowwise",
# decoder
"decoder.layers.*.self_attn.q_proj": "colwise",
"decoder.layers.*.self_attn.k_proj": "colwise",
"decoder.layers.*.self_attn.v_proj": "colwise",
"decoder.layers.*.self_attn.o_proj": "rowwise",
"decoder.layers.*.cross_attn.q_proj": "colwise",
"decoder.layers.*.cross_attn.k_proj": "colwise",
"decoder.layers.*.cross_attn.v_proj": "colwise",
"decoder.layers.*.cross_attn.o_proj": "rowwise",
"decoder.layers.*.mlp.gate_proj": "colwise",
"decoder.layers.*.mlp.up_proj": "colwise",
"decoder.layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
# encoder
"encoder.embed_tokens": (["input_ids"], ["inputs_embeds"]),
"encoder.layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"encoder.norm": (["hidden_states"], ["hidden_states"]),
# decoder
"decoder.embed_tokens": (["input_ids"], ["inputs_embeds"]),
"decoder.layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"decoder.norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
encoder: Optional[Union[T5GemmaModuleConfig, dict[Any, Any]]] = None,
decoder: Optional[Union[T5GemmaModuleConfig, dict[Any, Any]]] = None,
is_encoder_decoder: bool = True,
dropout_rate: float = 0.0,
classifier_dropout_rate: float = 0.0,
attention_dropout: float = 0.0,
tie_word_embeddings: bool = True,
vocab_size: int = 256000,
**kwargs,
):
if isinstance(encoder, dict):
encoder = T5GemmaModuleConfig(**encoder)
elif encoder is None:
encoder = T5GemmaModuleConfig()
else:
assert isinstance(encoder, T5GemmaModuleConfig), f"{type(encoder)} is not supported."
if isinstance(decoder, dict):
decoder = T5GemmaModuleConfig(**decoder)
elif decoder is None:
decoder = encoder
else:
assert isinstance(decoder, T5GemmaModuleConfig), f"{type(decoder)} is not supported."
encoder = T5GemmaModuleConfig(**encoder.to_dict())
decoder = T5GemmaModuleConfig(**decoder.to_dict())
encoder.is_decoder = False
encoder.dropout_rate = dropout_rate
encoder.attention_dropout = attention_dropout
self.encoder = encoder
decoder.is_decoder = True
decoder.use_cache = True
decoder.dropout_rate = dropout_rate
decoder.attention_dropout = attention_dropout
decoder.cross_attention_hidden_size = encoder.hidden_size
self.decoder = decoder
for special_token_key in ["bos_token_id", "pad_token_id", "eos_token_id"]:
if special_token_key not in kwargs:
kwargs[special_token_key] = getattr(decoder, special_token_key)
super().__init__(**kwargs)
self.is_encoder_decoder = is_encoder_decoder
self.use_cache = kwargs.get("use_cache", decoder.use_cache)
self.initializer_range = kwargs.get("initializer_range", decoder.initializer_range)
self.dropout_rate = dropout_rate
self.attention_dropout = attention_dropout
self.classifier_dropout_rate = classifier_dropout_rate
self.tie_word_embeddings = tie_word_embeddings
# Used in pipeline generation.
self.vocab_size = vocab_size
def __setattr__(self, key, value):
shared_attr_with_submodules = [
"output_hidden_states",
"output_attentions",
"_attn_implementation",
"dropout_rate",
"attention_dropout",
"vocab_size",
]
if key in shared_attr_with_submodules:
setattr(self.encoder, key, value)
setattr(self.decoder, key, value)
super().__setattr__(key, value)
def get_text_config(self, decoder=False):
# Always return self, regardless of the decoder option.
del decoder
return self
__all__ = ["T5GemmaConfig", "T5GemmaModuleConfig"]