team-10/venv/Lib/site-packages/transformers/models/t5gemma/modeling_t5gemma.py
2025-08-02 02:00:33 +02:00

1388 lines
59 KiB
Python

# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/t5gemma/modular_t5gemma.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_t5gemma.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Union
import torch
import torch.nn as nn
from transformers.utils.generic import OutputRecorder, check_model_inputs
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
from ...generation import GenerationMixin
from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, is_torchdynamo_compiling, logging
from .configuration_t5gemma import T5GemmaConfig, T5GemmaModuleConfig
logger = logging.get_logger(__name__)
class T5GemmaRMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float())
# Llama does x.to(float16) * w whilst T5Gemma is (x * w).to(float16)
# See https://github.com/huggingface/transformers/pull/29402
output = output * (1.0 + self.weight.float())
return output.type_as(x)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.eps}"
class T5GemmaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_activation]
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x):
hidden_states = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
hidden_states = self.dropout(hidden_states)
down_proj = self.down_proj(hidden_states)
return down_proj
class T5GemmaRotaryEmbedding(nn.Module):
def __init__(self, config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
dropout: float = 0.0,
scaling: Optional[float] = None,
softcap: Optional[float] = None,
**kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
if scaling is None:
scaling = module.head_dim**-0.5
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if softcap is not None:
attn_weights = attn_weights / softcap
attn_weights = torch.tanh(attn_weights)
attn_weights = attn_weights * softcap
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class T5GemmaSelfAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: T5GemmaModuleConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = config.query_pre_attn_scalar**-0.5
self.attention_dropout = self.config.attention_dropout
# Requied by flash attention: encoder selfattention is non-causal
self.is_causal = config.is_decoder
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
self.attn_logit_softcapping = self.config.attn_logit_softcapping
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=self.attention_dropout if self.training else 0.0,
scaling=self.scaling,
sliding_window=self.sliding_window,
softcap=self.attn_logit_softcapping,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class T5GemmaCrossAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: T5GemmaModuleConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = config.query_pre_attn_scalar**-0.5
self.attention_dropout = self.config.attention_dropout
self.is_causal = False
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.cross_attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.cross_attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
self.attn_logit_softcapping = self.config.attn_logit_softcapping
if config.cross_attention_hidden_size is None:
raise ValueError("Cross-attention needs cross_attention_hidden_size to be specified.")
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor],
encoder_hidden_states: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
if encoder_hidden_states is None:
raise ValueError("Encoder hidden state is required for cross attention.")
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
curr_past_key_value = past_key_value.cross_attention_cache
if past_key_value is None or not is_updated:
encoder_input_shape = encoder_hidden_states.shape[:-1]
encoder_hidden_shape = (*encoder_input_shape, -1, self.head_dim)
key_states = self.k_proj(encoder_hidden_states).view(encoder_hidden_shape).transpose(1, 2)
value_states = self.v_proj(encoder_hidden_states).view(encoder_hidden_shape).transpose(1, 2)
if past_key_value is not None:
key_states, value_states = curr_past_key_value.update(key_states, value_states, self.layer_idx)
past_key_value.is_updated[self.layer_idx] = True
else:
key_states = curr_past_key_value.layers[self.layer_idx].keys
value_states = curr_past_key_value.layers[self.layer_idx].values
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=self.attention_dropout if self.training else 0.0,
scaling=self.scaling,
sliding_window=None,
softcap=self.attn_logit_softcapping,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class T5GemmaEncoderLayer(GradientCheckpointingLayer):
"""Encoder sub-layer."""
def __init__(self, config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.config = config
self.layer_idx = layer_idx
self.attention_type = config.layer_types[layer_idx]
self.self_attn = T5GemmaSelfAttention(
config=config,
layer_idx=layer_idx,
)
self.pre_self_attn_layernorm = T5GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_self_attn_layernorm = T5GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.mlp = T5GemmaMLP(config)
self.pre_feedforward_layernorm = T5GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = T5GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
**kwargs,
) -> tuple[torch.FloatTensor,]:
residual = hidden_states
hidden_states = self.pre_self_attn_layernorm(hidden_states)
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=None,
**kwargs,
)
hidden_states = self.post_self_attn_layernorm(hidden_states)
hidden_states = residual + self.dropout(hidden_states)
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + self.dropout(hidden_states)
return hidden_states
class T5GemmaDecoderLayer(T5GemmaEncoderLayer):
"""Decoder sub-layer: an extra cross-attention layer."""
def __init__(self, config, layer_idx: int):
super().__init__(config, layer_idx)
self.cross_attn = T5GemmaCrossAttention(config=config, layer_idx=layer_idx)
self.pre_cross_attn_layernorm = T5GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_cross_attn_layernorm = T5GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[EncoderDecoderCache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.FloatTensor:
residual = hidden_states
hidden_states = self.pre_self_attn_layernorm(hidden_states)
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value.self_attention_cache if past_key_value is not None else None,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = self.post_self_attn_layernorm(hidden_states)
hidden_states = residual + self.dropout(hidden_states)
residual = hidden_states
hidden_states = self.pre_cross_attn_layernorm(hidden_states)
hidden_states, _ = self.cross_attn(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
use_cache=use_cache,
**kwargs,
)
hidden_states = self.post_cross_attn_layernorm(hidden_states)
hidden_states = residual + self.dropout(hidden_states)
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + self.dropout(hidden_states)
return hidden_states
class T5GemmaClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, hidden_size: int, num_labels: int, classifier_dropout_rate: float = 0.0):
super().__init__()
self.dropout = nn.Dropout(p=classifier_dropout_rate)
self.out_proj = nn.Linear(hidden_size, num_labels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class T5GemmaLMHead(nn.Module):
"""Head for language modeling (generation) tasks."""
def __init__(self, hidden_size: int, vocab_size: int, bias: bool = False):
super().__init__()
self.out_proj = nn.Linear(hidden_size, vocab_size, bias=bias)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
logits = self.out_proj(hidden_states)
return logits
class T5GemmaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: T5GemmaConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = config.query_pre_attn_scalar**-0.5
self.attention_dropout = self.config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
self.attn_logit_softcapping = self.config.attn_logit_softcapping
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=self.attention_dropout if self.training else 0.0,
scaling=self.scaling,
sliding_window=self.sliding_window,
softcap=self.attn_logit_softcapping,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
@auto_docstring
class T5GemmaPreTrainedModel(PreTrainedModel):
config: T5GemmaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["T5GemmaBlock"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_can_compile_fullgraph = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": T5GemmaDecoderLayer,
"attentions": T5GemmaAttention,
}
def _init_weights(self, module):
# TODO: support intialization for encoders and decoders separately(?)
super()._init_weights(module)
std = self.config.initializer_range
if isinstance(module, T5GemmaClassificationHead):
scale = module.out_proj.weight.shape[0] ** -0.5
module.out_proj.weight.data.normal_(mean=0.0, std=std * scale)
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None:
module.out_proj.bias.data.zero_()
elif isinstance(module, T5GemmaLMHead):
if not self.config.tie_word_embeddings:
scale = module.out_proj.weight.shape[0] ** -0.5
module.out_proj.weight.data.normal_(mean=0.0, std=std * scale)
def _shift_right(self, input_ids):
"""
Shifts input_ids to the right, prepends the decoder_start_token_id, and handles
pad_token_id replacement for labels that were -100.
This is a common preparation step for decoder inputs in sequence-to-sequence models.
"""
decoder_start_token_id = self.config.decoder.bos_token_id
pad_token_id = self.config.decoder.pad_token_id
if decoder_start_token_id is None:
raise ValueError("self.model.config.decoder.bos_token_id has to be defined. ")
# shift inputs to the right
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.decoder.pad_token_id has to be defined.")
# Is this T5 specific?
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def bidirectional_mask_function(attention_mask: Optional[torch.Tensor]) -> Callable:
"""
This creates bidirectional attention mask.
"""
def inner_mask(batch_idx: int, head_idx: int, q_idx: int, kv_idx: int) -> bool:
if attention_mask is None:
return torch.ones((), dtype=torch.bool)
return attention_mask[batch_idx, kv_idx].to(torch.bool)
return inner_mask
def sliding_window_bidirectional_mask_function(sliding_window: int) -> Callable:
"""
This creates bidirectional attention mask with sliding window.
"""
def inner_mask(batch_idx: int, head_idx: int, q_idx: int, kv_idx: int) -> bool:
return (q_idx - sliding_window < kv_idx) & (kv_idx < q_idx + sliding_window)
return inner_mask
def make_default_2d_attention_mask(
token_ids: Optional[torch.LongTensor],
hidden_states: torch.Tensor,
pad_token_id: Optional[int],
) -> torch.Tensor:
"""Construct the default attention mask."""
if token_ids is not None:
if pad_token_id is None:
raise ValueError("`pad_token_id` is required for padding information.")
attention_mask = (token_ids != pad_token_id).to(hidden_states.device, torch.long)
else:
attention_mask = torch.ones(
(hidden_states.shape[0], hidden_states.shape[1]), device=hidden_states.device, dtype=torch.long
)
return attention_mask
class T5GemmaEncoder(T5GemmaPreTrainedModel):
_can_record_outputs = {
"attentions": T5GemmaSelfAttention,
"hidden_states": T5GemmaEncoderLayer,
}
def __init__(self, config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.norm = T5GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = T5GemmaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.layers = nn.ModuleList(
[T5GemmaEncoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
@check_model_inputs
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutput:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
if attention_mask is None:
attention_mask = make_default_2d_attention_mask(input_ids, inputs_embeds, self.config.pad_token_id)
if not isinstance(self_attn_mask_mapping := attention_mask, dict):
mask_kwargs = {
"config": self.config,
"input_embeds": inputs_embeds,
"attention_mask": attention_mask,
"cache_position": cache_position,
"past_key_values": None,
"position_ids": position_ids,
}
self_attn_mask_mapping = {
"full_attention": create_causal_mask(
**mask_kwargs,
or_mask_function=bidirectional_mask_function(attention_mask),
),
"sliding_attention": create_sliding_window_causal_mask(
**mask_kwargs,
or_mask_function=sliding_window_bidirectional_mask_function(self.config.sliding_window),
and_mask_function=bidirectional_mask_function(attention_mask),
),
}
hidden_states = inputs_embeds
position_embeddings = self.rotary_emb(hidden_states, position_ids)
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
hidden_states = self.dropout(hidden_states)
for layer_module in self.layers[: self.config.num_hidden_layers]:
hidden_states = layer_module(
hidden_states,
position_embeddings,
self_attn_mask_mapping[layer_module.attention_type],
position_ids,
**kwargs,
)
hidden_states = self.norm(hidden_states)
hidden_states = self.dropout(hidden_states)
return BaseModelOutput(
last_hidden_state=hidden_states,
)
class T5GemmaDecoder(T5GemmaEncoder):
_can_record_outputs = {
"attentions": OutputRecorder(T5GemmaSelfAttention, index=1),
"cross_attentions": OutputRecorder(T5GemmaCrossAttention, index=1),
"hidden_states": T5GemmaDecoderLayer,
}
def __init__(self, config):
super().__init__(config)
self.layers = nn.ModuleList(
[T5GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.post_init()
@check_model_inputs
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[EncoderDecoderCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPastAndCrossAttentions:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if encoder_hidden_states is None:
raise ValueError("`encoder_hidden_states` must be given in decoder")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if not self.training and use_cache and past_key_values is None:
past_key_values = EncoderDecoderCache(
self_attention_cache=DynamicCache(),
cross_attention_cache=DynamicCache(),
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
if attention_mask is None and past_key_values is None:
attention_mask = make_default_2d_attention_mask(input_ids, inputs_embeds, self.config.pad_token_id)
if not isinstance(self_attn_mask_mapping := attention_mask, dict):
mask_kwargs = {
"config": self.config,
"input_embeds": inputs_embeds,
"attention_mask": attention_mask,
"cache_position": cache_position,
"past_key_values": past_key_values.self_attention_cache if past_key_values is not None else None,
"position_ids": position_ids,
}
self_attn_mask_mapping = {
"full_attention": create_causal_mask(**mask_kwargs),
"sliding_attention": create_sliding_window_causal_mask(**mask_kwargs),
}
if not isinstance(cross_attn_mask_mapping := encoder_attention_mask, dict):
mask_kwargs = {
"config": self.config,
"input_embeds": encoder_hidden_states,
"attention_mask": encoder_attention_mask,
"cache_position": cache_position,
"past_key_values": None,
"position_ids": None,
}
cross_attn_mask_mapping = {
"full_attention": create_causal_mask(
**mask_kwargs,
or_mask_function=bidirectional_mask_function(encoder_attention_mask),
),
}
hidden_states = inputs_embeds
position_embeddings = self.rotary_emb(hidden_states, position_ids)
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
hidden_states = self.dropout(hidden_states)
for layer_module in self.layers[: self.config.num_hidden_layers]:
hidden_states = layer_module(
hidden_states,
position_embeddings,
self_attn_mask_mapping[layer_module.attention_type],
position_ids,
past_key_values,
use_cache,
cache_position,
encoder_hidden_states,
cross_attn_mask_mapping["full_attention"],
**kwargs,
)
hidden_states = self.norm(hidden_states)
hidden_states = self.dropout(hidden_states)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
)
@auto_docstring
class T5GemmaModel(T5GemmaPreTrainedModel):
def __init__(self, config: T5GemmaConfig):
super().__init__(config)
if not config.is_encoder_decoder:
raise ValueError("T5GemmaModel only support encoder-decoder modeling. Use `T5GemmaEncoderModel` instead.")
self.encoder = T5GemmaEncoder(config.encoder)
self.decoder = T5GemmaDecoder(config.decoder)
self.post_init()
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def get_input_embeddings(self):
return self.encoder.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
return self.encoder.set_input_embeddings(new_embeddings)
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
decoder_position_ids: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[BaseModelOutput] = None,
past_key_values: Optional[EncoderDecoderCache] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> Seq2SeqModelOutput:
r"""
decoder_position_ids (`torch.LongTensor` of shape `(batch_size, decoder_sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0,
config.decoder.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
"""
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
**kwargs,
)
encoder_hidden_states = encoder_outputs.last_hidden_state
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states
if kwargs.get("output_hidden_states", False)
else (decoder_outputs.last_hidden_state,),
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@auto_docstring
class T5GemmaEncoderModel(T5GemmaPreTrainedModel):
def __init__(self, config: T5GemmaConfig):
super().__init__(config)
if config.is_encoder_decoder:
raise ValueError("T5GemmaEncoderModel only supports encoder-only model. Use `T5GemmaModel` instead.")
self.encoder = T5GemmaEncoder(config.encoder)
self.post_init()
def get_input_embeddings(self):
return self.encoder.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
return self.encoder.set_input_embeddings(new_embeddings)
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutput:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
**kwargs,
)
return encoder_outputs
class T5GemmaForConditionalGeneration(T5GemmaPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["model.decoder.embed_tokens.weight", "lm_head.out_proj.weight"]
_tp_plan = {"lm_head.out_proj": "colwise_rep"}
_pp_plan = {"lm_head.out_proj": (["hidden_states"], ["logits"])}
def __init__(self, config: T5GemmaConfig):
config.is_encoder_decoder = True
super().__init__(config)
self.model = T5GemmaModel(config)
self.vocab_size = config.decoder.vocab_size
self.lm_head = T5GemmaLMHead(config.decoder.hidden_size, self.vocab_size)
self.loss_type = "ForMaskedLM"
self.post_init()
def set_output_embeddings(self, new_embeddings):
self.lm_head.out_proj = new_embeddings
def get_output_embeddings(self):
return self.lm_head.out_proj
def _tie_weights(self):
# Decoder input and output embeddings are tied.
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.lm_head.out_proj, self.get_decoder().get_input_embeddings())
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
decoder_position_ids: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[BaseModelOutput] = None,
past_key_values: Optional[EncoderDecoderCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
decoder_position_ids (`torch.LongTensor` of shape `(batch_size, decoder_sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0,
config.decoder.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
if self.training and self.config._attn_implementation != "eager":
msg = (
"It is strongly recommended to train T5Gemma models with the `eager` attention implementation "
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
)
if is_torchdynamo_compiling():
raise ValueError(msg)
else:
logger.warning_once(msg)
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
decoder_outputs: Seq2SeqModelOutput = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = decoder_outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
decoder_config = self.get_decoder().config
if decoder_config.final_logit_softcapping is not None:
logits = logits / decoder_config.final_logit_softcapping
logits = torch.tanh(logits)
logits = logits * decoder_config.final_logit_softcapping
loss = None
if labels is not None:
# Input has right-shifted so we directly perform masked lm loss
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
return Seq2SeqLMOutput(
loss=loss,
logits=logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.decoder_hidden_states,
decoder_attentions=decoder_outputs.decoder_attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=decoder_outputs.encoder_last_hidden_state,
encoder_hidden_states=decoder_outputs.encoder_hidden_states,
encoder_attentions=decoder_outputs.encoder_attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
@auto_docstring
class T5GemmaForSequenceClassification(T5GemmaPreTrainedModel):
def __init__(self, config: T5GemmaConfig, is_encoder_decoder: Optional[bool] = None):
r"""
is_encoder_decoder (`Optional`, *optional*):
Whether use encoder_decoder for sequence classification. When set to False, only encoder is used.
"""
if is_encoder_decoder is not None:
config.is_encoder_decoder = is_encoder_decoder
super().__init__(config)
self.num_labels = config.num_labels
if config.is_encoder_decoder:
self.model = T5GemmaModel(config)
else:
self.model = T5GemmaEncoderModel(config)
hidden_size = config.encoder.hidden_size
if config.is_encoder_decoder:
hidden_size = config.decoder.hidden_size
classifier_dropout = getattr(config, "classifier_dropout_rate", 0.1)
self.score = T5GemmaClassificationHead(hidden_size, self.num_labels, classifier_dropout)
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.Tensor] = None,
decoder_position_ids: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[BaseModelOutput] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> SequenceClassifierOutput:
r"""
decoder_position_ids (`torch.LongTensor` of shape `(batch_size, decoder_sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0,
config.decoder.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
if self.config.is_encoder_decoder and (input_ids is None and inputs_embeds is not None):
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__} in encoder-decoder mode."
)
# Following T5, we automatically creates decoder_input_ids from input_ids if no decoder_input_ids are provided
if self.config.is_encoder_decoder and (decoder_input_ids is None and decoder_inputs_embeds is None):
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = self._shift_right(input_ids)
if self.config.is_encoder_decoder:
outputs: Seq2SeqModelOutput = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=False,
**kwargs,
)
last_hidden_state = outputs.last_hidden_state
hidden_states = outputs.decoder_hidden_states
attentions = outputs.decoder_attentions
else:
outputs: BaseModelOutput = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
**kwargs,
)
last_hidden_state = outputs.last_hidden_state
hidden_states = outputs.hidden_states
attentions = outputs.attentions
logits = self.score(last_hidden_state)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
if self.config.is_encoder_decoder:
last_non_pad_token += 1 # due to the right shift.
last_non_pad_token = torch.clamp(last_non_pad_token, max=decoder_input_ids.shape[-1] - 1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutput(
loss=loss,
logits=pooled_logits,
hidden_states=hidden_states,
attentions=attentions,
)
@auto_docstring
class T5GemmaForTokenClassification(T5GemmaPreTrainedModel):
def __init__(self, config: T5GemmaConfig, is_encoder_decoder: Optional[bool] = None):
r"""
is_encoder_decoder (`Optional`, *optional*):
Whether use encoder_decoder for token classification. When set to False, only encoder is used.
"""
if is_encoder_decoder is not None:
config.is_encoder_decoder = is_encoder_decoder
super().__init__(config)
self.num_labels = config.num_labels
if config.is_encoder_decoder:
self.model = T5GemmaModel(config)
else:
self.model = T5GemmaEncoderModel(config)
hidden_size = config.encoder.hidden_size
if config.is_encoder_decoder:
hidden_size = config.decoder.hidden_size
classifier_dropout = getattr(config, "classifier_dropout_rate", 0.1)
self.score = T5GemmaClassificationHead(hidden_size, self.num_labels, classifier_dropout)
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.Tensor] = None,
decoder_position_ids: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[BaseModelOutput] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> TokenClassifierOutput:
r"""
decoder_position_ids (`torch.LongTensor` of shape `(batch_size, decoder_sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0,
config.decoder.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
if self.config.is_encoder_decoder and (input_ids is None and inputs_embeds is not None):
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__} in encoder-decoder mode."
)
if self.config.is_encoder_decoder and (decoder_input_ids is None and decoder_inputs_embeds is None):
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = self._shift_right(input_ids)
if self.config.is_encoder_decoder:
outputs: Seq2SeqModelOutput = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=False,
**kwargs,
)
last_hidden_state = outputs.last_hidden_state
hidden_states = outputs.decoder_hidden_states
attentions = outputs.decoder_attentions
else:
outputs: BaseModelOutput = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
**kwargs,
)
last_hidden_state = outputs.last_hidden_state
hidden_states = outputs.hidden_states
attentions = outputs.attentions
logits = self.score(last_hidden_state)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=hidden_states,
attentions=attentions,
)
__all__ = [
"T5GemmaForConditionalGeneration",
"T5GemmaModel",
"T5GemmaEncoderModel",
"T5GemmaPreTrainedModel",
"T5GemmaForSequenceClassification",
"T5GemmaForTokenClassification",
]