184 lines
7.8 KiB
Python
184 lines
7.8 KiB
Python
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
||
# and https://github.com/hojonathanho/diffusion
|
||
|
||
import math
|
||
from typing import Union
|
||
|
||
import numpy as np
|
||
import torch
|
||
|
||
from ..configuration_utils import ConfigMixin, register_to_config
|
||
from .scheduling_utils import SchedulerMixin
|
||
|
||
|
||
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
|
||
"""
|
||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||
(1-beta) over time from t = [0,1].
|
||
|
||
:param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t
|
||
from 0 to 1 and
|
||
produces the cumulative product of (1-beta) up to that part of the diffusion process.
|
||
:param max_beta: the maximum beta to use; use values lower than 1 to
|
||
prevent singularities.
|
||
"""
|
||
|
||
def alpha_bar(time_step):
|
||
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
|
||
|
||
betas = []
|
||
for i in range(num_diffusion_timesteps):
|
||
t1 = i / num_diffusion_timesteps
|
||
t2 = (i + 1) / num_diffusion_timesteps
|
||
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
||
return np.array(betas, dtype=np.float32)
|
||
|
||
|
||
class DDIMScheduler(SchedulerMixin, ConfigMixin):
|
||
@register_to_config
|
||
def __init__(
|
||
self,
|
||
num_train_timesteps=1000,
|
||
beta_start=0.0001,
|
||
beta_end=0.02,
|
||
beta_schedule="linear",
|
||
trained_betas=None,
|
||
timestep_values=None,
|
||
clip_sample=True,
|
||
set_alpha_to_one=True,
|
||
tensor_format="pt",
|
||
):
|
||
|
||
if beta_schedule == "linear":
|
||
self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
|
||
elif beta_schedule == "scaled_linear":
|
||
# this schedule is very specific to the latent diffusion model.
|
||
self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2
|
||
elif beta_schedule == "squaredcos_cap_v2":
|
||
# Glide cosine schedule
|
||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||
else:
|
||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||
|
||
self.alphas = 1.0 - self.betas
|
||
self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
|
||
|
||
# At every step in ddim, we are looking into the previous alphas_cumprod
|
||
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
||
# `set_alpha_to_one` decides whether we set this paratemer simply to one or
|
||
# whether we use the final alpha of the "non-previous" one.
|
||
self.final_alpha_cumprod = np.array(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
||
|
||
# setable values
|
||
self.num_inference_steps = None
|
||
self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
|
||
|
||
self.tensor_format = tensor_format
|
||
self.set_format(tensor_format=tensor_format)
|
||
|
||
def _get_variance(self, timestep, prev_timestep):
|
||
alpha_prod_t = self.alphas_cumprod[timestep]
|
||
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
||
beta_prod_t = 1 - alpha_prod_t
|
||
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
||
|
||
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
||
|
||
return variance
|
||
|
||
def set_timesteps(self, num_inference_steps, offset=0):
|
||
self.num_inference_steps = num_inference_steps
|
||
self.timesteps = np.arange(
|
||
0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps
|
||
)[::-1].copy()
|
||
self.timesteps += offset
|
||
self.set_format(tensor_format=self.tensor_format)
|
||
|
||
def step(
|
||
self,
|
||
model_output: Union[torch.FloatTensor, np.ndarray],
|
||
timestep: int,
|
||
sample: Union[torch.FloatTensor, np.ndarray],
|
||
eta: float = 0.0,
|
||
use_clipped_model_output: bool = False,
|
||
generator=None,
|
||
):
|
||
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
||
# Ideally, read DDIM paper in-detail understanding
|
||
|
||
# Notation (<variable name> -> <name in paper>
|
||
# - pred_noise_t -> e_theta(x_t, t)
|
||
# - pred_original_sample -> f_theta(x_t, t) or x_0
|
||
# - std_dev_t -> sigma_t
|
||
# - eta -> η
|
||
# - pred_sample_direction -> "direction pointingc to x_t"
|
||
# - pred_prev_sample -> "x_t-1"
|
||
|
||
# 1. get previous step value (=t-1)
|
||
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
|
||
|
||
# 2. compute alphas, betas
|
||
alpha_prod_t = self.alphas_cumprod[timestep]
|
||
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
||
beta_prod_t = 1 - alpha_prod_t
|
||
|
||
# 3. compute predicted original sample from predicted noise also called
|
||
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
||
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
||
|
||
# 4. Clip "predicted x_0"
|
||
if self.config.clip_sample:
|
||
pred_original_sample = self.clip(pred_original_sample, -1, 1)
|
||
|
||
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
||
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
||
variance = self._get_variance(timestep, prev_timestep)
|
||
std_dev_t = eta * variance ** (0.5)
|
||
|
||
if use_clipped_model_output:
|
||
# the model_output is always re-derived from the clipped x_0 in Glide
|
||
model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
||
|
||
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
||
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
|
||
|
||
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
||
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
||
|
||
if eta > 0:
|
||
device = model_output.device if torch.is_tensor(model_output) else "cpu"
|
||
noise = torch.randn(model_output.shape, generator=generator).to(device)
|
||
variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise
|
||
|
||
if not torch.is_tensor(model_output):
|
||
variance = variance.numpy()
|
||
|
||
prev_sample = prev_sample + variance
|
||
|
||
return {"prev_sample": prev_sample}
|
||
|
||
def add_noise(self, original_samples, noise, timesteps):
|
||
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
|
||
sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
|
||
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
|
||
sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples)
|
||
|
||
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
||
return noisy_samples
|
||
|
||
def __len__(self):
|
||
return self.config.num_train_timesteps
|