team-10/venv/Lib/site-packages/llama_cpp/llama_cpp.py
2025-08-02 02:00:33 +02:00

4343 lines
147 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from __future__ import annotations
import os
import ctypes
import pathlib
from typing import (
Callable,
Union,
NewType,
Optional,
TYPE_CHECKING,
)
from llama_cpp._ctypes_extensions import (
load_shared_library,
byref,
ctypes_function_for_shared_library,
)
if TYPE_CHECKING:
from llama_cpp._ctypes_extensions import (
CtypesCData,
CtypesArray,
CtypesPointer,
CtypesVoidPointer,
CtypesRef,
CtypesPointerOrRef,
CtypesFuncPointer,
)
# Specify the base name of the shared library to load
_lib_base_name = "llama"
_override_base_path = os.environ.get("LLAMA_CPP_LIB_PATH")
_base_path = pathlib.Path(os.path.abspath(os.path.dirname(__file__))) / "lib" if _override_base_path is None else pathlib.Path(_override_base_path)
# Load the library
_lib = load_shared_library(_lib_base_name, _base_path)
ctypes_function = ctypes_function_for_shared_library(_lib)
# from ggml.h
# // NOTE: always add types at the end of the enum to keep backward compatibility
# enum ggml_type {
# GGML_TYPE_F32 = 0,
# GGML_TYPE_F16 = 1,
# GGML_TYPE_Q4_0 = 2,
# GGML_TYPE_Q4_1 = 3,
# // GGML_TYPE_Q4_2 = 4, support has been removed
# // GGML_TYPE_Q4_3 = 5, support has been removed
# GGML_TYPE_Q5_0 = 6,
# GGML_TYPE_Q5_1 = 7,
# GGML_TYPE_Q8_0 = 8,
# GGML_TYPE_Q8_1 = 9,
# GGML_TYPE_Q2_K = 10,
# GGML_TYPE_Q3_K = 11,
# GGML_TYPE_Q4_K = 12,
# GGML_TYPE_Q5_K = 13,
# GGML_TYPE_Q6_K = 14,
# GGML_TYPE_Q8_K = 15,
# GGML_TYPE_IQ2_XXS = 16,
# GGML_TYPE_IQ2_XS = 17,
# GGML_TYPE_IQ3_XXS = 18,
# GGML_TYPE_IQ1_S = 19,
# GGML_TYPE_IQ4_NL = 20,
# GGML_TYPE_IQ3_S = 21,
# GGML_TYPE_IQ2_S = 22,
# GGML_TYPE_IQ4_XS = 23,
# GGML_TYPE_I8 = 24,
# GGML_TYPE_I16 = 25,
# GGML_TYPE_I32 = 26,
# GGML_TYPE_I64 = 27,
# GGML_TYPE_F64 = 28,
# GGML_TYPE_IQ1_M = 29,
# GGML_TYPE_COUNT,
# };
GGML_TYPE_F32 = 0
GGML_TYPE_F16 = 1
GGML_TYPE_Q4_0 = 2
GGML_TYPE_Q4_1 = 3
GGML_TYPE_Q5_0 = 6
GGML_TYPE_Q5_1 = 7
GGML_TYPE_Q8_0 = 8
GGML_TYPE_Q8_1 = 9
GGML_TYPE_Q2_K = 10
GGML_TYPE_Q3_K = 11
GGML_TYPE_Q4_K = 12
GGML_TYPE_Q5_K = 13
GGML_TYPE_Q6_K = 14
GGML_TYPE_Q8_K = 15
GGML_TYPE_IQ2_XXS = 16
GGML_TYPE_IQ2_XS = 17
GGML_TYPE_IQ3_XXS = 18
GGML_TYPE_IQ1_S = 19
GGML_TYPE_IQ4_NL = 20
GGML_TYPE_IQ3_S = 21
GGML_TYPE_IQ2_S = 22
GGML_TYPE_IQ4_XS = 23
GGML_TYPE_I8 = 24
GGML_TYPE_I16 = 25
GGML_TYPE_I32 = 26
GGML_TYPE_I64 = 27
GGML_TYPE_F64 = 28
GGML_TYPE_IQ1_M = 29
GGML_TYPE_COUNT = 30
# from ggml-backend.h
# typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
ggml_backend_sched_eval_callback = ctypes.CFUNCTYPE(
ctypes.c_bool, ctypes.c_void_p, ctypes.c_bool, ctypes.c_void_p
)
# // Abort callback
# // If not NULL, called before ggml computation
# // If it returns true, the computation is aborted
# typedef bool (*ggml_abort_callback)(void * data);
ggml_abort_callback = ctypes.CFUNCTYPE(ctypes.c_bool, ctypes.c_void_p)
# llama.h bindings
_lib.llama_max_devices.argtypes = []
_lib.llama_max_devices.restype = ctypes.c_size_t
LLAMA_MAX_DEVICES = _lib.llama_max_devices()
# define LLAMA_DEFAULT_SEED 0xFFFFFFFF
LLAMA_DEFAULT_SEED = 0xFFFFFFFF
# define LLAMA_TOKEN_NULL -1
LLAMA_TOKEN_NULL = -1
# define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
LLAMA_FILE_MAGIC_GGLA = 0x67676C61
# define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
LLAMA_FILE_MAGIC_GGSN = 0x6767736E
# define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
LLAMA_FILE_MAGIC_GGSQ = 0x67677371
# define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
LLAMA_SESSION_MAGIC = LLAMA_FILE_MAGIC_GGSN
# define LLAMA_SESSION_VERSION 9
LLAMA_SESSION_VERSION = 9
# define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
LLAMA_STATE_SEQ_MAGIC = LLAMA_FILE_MAGIC_GGSQ
# define LLAMA_STATE_SEQ_VERSION 2
LLAMA_STATE_SEQ_VERSION = 2
# struct llama_vocab;
llama_vocab_p = NewType("llama_vocab_p", int)
llama_vocab_p_ctypes = ctypes.c_void_p
# struct llama_model;
llama_model_p = NewType("llama_model_p", int)
llama_model_p_ctypes = ctypes.c_void_p
# struct llama_context;
llama_context_p = NewType("llama_context_p", int)
llama_context_p_ctypes = ctypes.c_void_p
# typedef struct llama_memory_i * llama_memory_t;
llama_memory_t = NewType("llama_memory_t", int)
llama_memory_t_ctypes = ctypes.c_void_p
# struct llama_kv_cache; (DEPRECATED)
llama_kv_cache_p = NewType("llama_kv_cache_p", int)
llama_kv_cache_p_ctypes = ctypes.c_void_p
# typedef int32_t llama_pos;
llama_pos = ctypes.c_int32
# typedef int32_t llama_token;
llama_token = ctypes.c_int32
llama_token_p = ctypes.POINTER(llama_token)
# typedef int32_t llama_seq_id;
llama_seq_id = ctypes.c_int32
# enum llama_vocab_type {
# LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
# LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
# LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
# LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
# LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
# LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
# LLAMA_VOCAB_TYPE_PLAMO2 = 6, // PLaMo-2 tokenizer based on Aho-Corasick with dynamic programming
# };
LLAMA_VOCAB_TYPE_NONE = 0
"""For models without vocab"""
LLAMA_VOCAB_TYPE_SPM = 1
"""LLaMA tokenizer based on byte-level BPE with byte fallback"""
LLAMA_VOCAB_TYPE_BPE = 2
"""GPT-2 tokenizer based on byte-level BPE"""
LLAMA_VOCAB_TYPE_WPM = 3
"""BERT tokenizer based on WordPiece"""
LLAMA_VOCAB_TYPE_UGM = 4
"""T5 tokenizer based on Unigram"""
LLAMA_VOCAB_TYPE_RWKV = 5
"""RWKV tokenizer based on greedy tokenization"""
LLAMA_VOCAB_TYPE_PLAMO2 = 6
"""PLaMo-2 tokenizer based on Aho-Corasick with dynamic programming"""
# NOTE: Deprecated and will be removed in the future. (already gone in llama.cpp)
# // pre-tokenization types
# enum llama_vocab_pre_type {
# LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
# LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
# LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
# LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
# LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
# LLAMA_VOCAB_PRE_TYPE_MPT = 5,
# LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
# LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
# LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
# LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
# LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
# LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
# LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
# LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
# LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
# LLAMA_VOCAB_PRE_TYPE_PORO = 15,
# LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
# LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
# LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
# LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
# LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
# LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
# LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
# LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
# LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
# LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
# LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
# LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
# LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
# LLAMA_VOCAB_PRE_TYPE_GPT4O = 29,
# LLAMA_VOCAB_PRE_TYPE_SUPERBPE = 30,
# LLAMA_VOCAB_PRE_TYPE_TRILLION = 31,
# LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32,
# LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33,
# LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34,
# LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35,
# };
LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0
LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3
LLAMA_VOCAB_PRE_TYPE_FALCON = 4
LLAMA_VOCAB_PRE_TYPE_MPT = 5
LLAMA_VOCAB_PRE_TYPE_STARCODER = 6
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7
LLAMA_VOCAB_PRE_TYPE_REFACT = 8
LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9
LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10
LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11
LLAMA_VOCAB_PRE_TYPE_OLMO = 12
LLAMA_VOCAB_PRE_TYPE_DBRX = 13
LLAMA_VOCAB_PRE_TYPE_SMAUG = 14
LLAMA_VOCAB_PRE_TYPE_PORO = 15
LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16
LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17
LLAMA_VOCAB_PRE_TYPE_VIKING = 18
LLAMA_VOCAB_PRE_TYPE_JAIS = 19
LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20
LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21
LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22
LLAMA_VOCAB_PRE_TYPE_BLOOM = 23
LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24
LLAMA_VOCAB_PRE_TYPE_EXAONE = 25
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26
LLAMA_VOCAB_PRE_TYPE_MINERVA = 27
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28
LLAMA_VOCAB_PRE_TYPE_GPT4O = 29
LLAMA_VOCAB_PRE_TYPE_SUPERBPE = 30
LLAMA_VOCAB_PRE_TYPE_TRILLION = 31
LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32
LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33
LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34
LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35
# // note: these values should be synchronized with ggml_rope
# // TODO: maybe move this enum to ggml.h (ggml_rope_type)
# enum llama_rope_type {
# LLAMA_ROPE_TYPE_NONE = -1,
# LLAMA_ROPE_TYPE_NORM = 0,
# LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
# LLAMA_ROPE_TYPE_MROPE = GGML_ROPE_TYPE_MROPE,
# LLAMA_ROPE_TYPE_VISION = GGML_ROPE_TYPE_VISION,
# };
LLAMA_ROPE_TYPE_NONE = -1
LLAMA_ROPE_TYPE_NORM = 0
LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX = 2
LLAMA_ROPE_TYPE_MROPE = GGML_ROPE_TYPE_MROPE = 8
LLAMA_ROPE_TYPE_VISION = GGML_ROPE_TYPE_VISION = 24
# enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
# LLAMA_TOKEN_TYPE_UNDEFINED = 0,
# LLAMA_TOKEN_TYPE_NORMAL = 1,
# LLAMA_TOKEN_TYPE_UNKNOWN = 2,
# LLAMA_TOKEN_TYPE_CONTROL = 3,
# LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
# LLAMA_TOKEN_TYPE_UNUSED = 5,
# LLAMA_TOKEN_TYPE_BYTE = 6,
# };
LLAMA_TOKEN_TYPE_UNDEFINED = 0
LLAMA_TOKEN_TYPE_NORMAL = 1
LLAMA_TOKEN_TYPE_UNKNOWN = 2
LLAMA_TOKEN_TYPE_CONTROL = 3
LLAMA_TOKEN_TYPE_USER_DEFINED = 4
LLAMA_TOKEN_TYPE_UNUSED = 5
LLAMA_TOKEN_TYPE_BYTE = 6
# enum llama_token_attr {
# LLAMA_TOKEN_ATTR_UNDEFINED = 0,
# LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
# LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
# LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
# LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
# LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
# LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
# LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
# LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
# LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
# LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
# };
LLAMA_TOKEN_ATTR_UNDEFINED = 0
LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0
LLAMA_TOKEN_ATTR_UNUSED = 1 << 1
LLAMA_TOKEN_ATTR_NORMAL = 1 << 2
LLAMA_TOKEN_ATTR_CONTROL = 1 << 3
LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4
LLAMA_TOKEN_ATTR_BYTE = 1 << 5
LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6
LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7
LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8
LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9
# // model file types
# enum llama_ftype {
# LLAMA_FTYPE_ALL_F32 = 0,
# LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
# // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
# // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
# // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
# LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
# //LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // removed from gguf files, use Q4_0 and runtime repack
# //LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // removed from gguf files, use Q4_0 and runtime repack
# //LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // removed from gguf files, use Q4_0 and runtime repack
# LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors
# LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors
#
# LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
# };
LLAMA_FTYPE_ALL_F32 = 0
LLAMA_FTYPE_MOSTLY_F16 = 1
LLAMA_FTYPE_MOSTLY_Q4_0 = 2
LLAMA_FTYPE_MOSTLY_Q4_1 = 3
LLAMA_FTYPE_MOSTLY_Q8_0 = 7
LLAMA_FTYPE_MOSTLY_Q5_0 = 8
LLAMA_FTYPE_MOSTLY_Q5_1 = 9
LLAMA_FTYPE_MOSTLY_Q2_K = 10
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17
LLAMA_FTYPE_MOSTLY_Q6_K = 18
LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19
LLAMA_FTYPE_MOSTLY_IQ2_XS = 20
LLAMA_FTYPE_MOSTLY_Q2_K_S = 21
LLAMA_FTYPE_MOSTLY_IQ3_XS = 22
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23
LLAMA_FTYPE_MOSTLY_IQ1_S = 24
LLAMA_FTYPE_MOSTLY_IQ4_NL = 25
LLAMA_FTYPE_MOSTLY_IQ3_S = 26
LLAMA_FTYPE_MOSTLY_IQ3_M = 27
LLAMA_FTYPE_MOSTLY_IQ2_S = 28
LLAMA_FTYPE_MOSTLY_IQ2_M = 29
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30
LLAMA_FTYPE_MOSTLY_IQ1_M = 31
LLAMA_FTYPE_MOSTLY_BF16 = 32
# LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33
# LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34
# LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35
LLAMA_FTYPE_MOSTLY_TQ1_0 = 36
LLAMA_FTYPE_MOSTLY_TQ2_0 = 37
LLAMA_FTYPE_GUESSED = 1024
# enum llama_rope_scaling_type {
# LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
# LLAMA_ROPE_SCALING_TYPE_NONE = 0,
# LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
# LLAMA_ROPE_SCALING_TYPE_YARN = 2,
# LLAMA_ROPE_SCALING_TYPE_LONGROPE = 3,
# LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_LONGROPE,
# };
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1
LLAMA_ROPE_SCALING_TYPE_NONE = 0
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1
LLAMA_ROPE_SCALING_TYPE_YARN = 2
LLAMA_ROPE_SCALING_TYPE_LONGROPE = 3
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_LONGROPE
# enum llama_pooling_type {
# LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
# LLAMA_POOLING_TYPE_NONE = 0,
# LLAMA_POOLING_TYPE_MEAN = 1,
# LLAMA_POOLING_TYPE_CLS = 2,
# LLAMA_POOLING_TYPE_LAST = 3,
# LLAMA_POOLING_TYPE_RANK = 4, // used by reranking models to attach the classification head to the graph
# };
LLAMA_POOLING_TYPE_UNSPECIFIED = -1
LLAMA_POOLING_TYPE_NONE = 0
LLAMA_POOLING_TYPE_MEAN = 1
LLAMA_POOLING_TYPE_CLS = 2
LLAMA_POOLING_TYPE_LAST = 3
LLAMA_POOLING_TYPE_RANK = 4
# enum llama_attention_type {
# LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
# LLAMA_ATTENTION_TYPE_CAUSAL = 0,
# LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
# };
LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1
LLAMA_ATTENTION_TYPE_CAUSAL = 0
LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1
# enum llama_split_mode {
# LLAMA_SPLIT_MODE_NONE = 0, // single GPU
# LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
# LLAMA_SPLIT_MODE_ROW = 2, // split layers and KV across GPUs, use tensor parallelism if supported
# };
LLAMA_SPLIT_MODE_NONE = 0
LLAMA_SPLIT_MODE_LAYER = 1
LLAMA_SPLIT_MODE_ROW = 2
# typedef struct llama_token_data {
# llama_token id; // token id
# float logit; // log-odds of the token
# float p; // probability of the token
# } llama_token_data;
class llama_token_data(ctypes.Structure):
"""Used to store token data
Attributes:
id (llama_token): token id
logit (float): log-odds of the token
p (float): probability of the token"""
if TYPE_CHECKING:
id: llama_token
logit: float
p: float
_fields_ = [
("id", llama_token),
("logit", ctypes.c_float),
("p", ctypes.c_float),
]
llama_token_data_p = ctypes.POINTER(llama_token_data)
# typedef struct llama_token_data_array {
# // TODO: consider SoA
# // NOTE: this pointer can be modified by the samplers
# llama_token_data * data;
# size_t size;
# int64_t selected; // this is the index in the data array (i.e. not the token id)
# bool sorted;
# } llama_token_data_array;
class llama_token_data_array(ctypes.Structure):
"""Used to sample tokens given logits
Attributes:
data (ctypes.Array[llama_token_data]): token data
size (int): size of the array
selected (int): index in the data array (i.e. not the token id)
sorted (bool): whether the array is sorted"""
if TYPE_CHECKING:
data: CtypesArray[llama_token_data]
size: int
selected: int
sorted: bool
_fields_ = [
("data", llama_token_data_p),
("size", ctypes.c_size_t),
("selected", ctypes.c_int64),
("sorted", ctypes.c_bool),
]
llama_token_data_array_p = ctypes.POINTER(llama_token_data_array)
# typedef bool (*llama_progress_callback)(float progress, void * user_data);
llama_progress_callback = ctypes.CFUNCTYPE(
ctypes.c_bool, ctypes.c_float, ctypes.c_void_p
)
# // Input data for llama_encode/llama_decode
# // A llama_batch object can contain input about one or many sequences
# // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
# //
# // - token : the token ids of the input (used when embd is NULL)
# // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
# // - pos : the positions of the respective token in the sequence
# // (if set to NULL, the token position will be tracked automatically by llama_encode/llama_decode)
# // - seq_id : the sequence to which the respective token belongs
# // (if set to NULL, the sequence ID will be assumed to be 0)
# // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
# // (if set to NULL:
# // - if embeddings: all tokens are output
# // - if not: only the last token is output
# // )
# //
# typedef struct llama_batch {
# int32_t n_tokens;
# llama_token * token;
# float * embd;
# llama_pos * pos;
# int32_t * n_seq_id;
# llama_seq_id ** seq_id;
# int8_t * logits; // TODO: rename this to "output"
# } llama_batch;
class llama_batch(ctypes.Structure):
"""Input data for llama_encode/llama_decode
A llama_batch object can contain input about one or many sequences
The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
Attributes:
n_tokens (int): number of tokens
token (ctypes.Array[llama_token]): the token ids of the input (used when embd is NULL)
embd (ctypes.Array[ctypes.ctypes.c_float]): token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
pos (ctypes.Array[ctypes.Array[llama_pos]]): the positions of the respective token in the sequence
seq_id (ctypes.Array[ctypes.Array[llama_seq_id]]): the sequence to which the respective token belongs
logits (ctypes.Array[ctypes.ctypes.c_int8]): if zero, the logits for the respective token will not be output
"""
if TYPE_CHECKING:
n_tokens: int
token: CtypesArray[llama_token]
embd: CtypesArray[ctypes.c_float]
pos: CtypesArray[CtypesArray[llama_pos]]
n_seq_id: CtypesArray[ctypes.c_int]
seq_id: CtypesArray[CtypesArray[llama_seq_id]]
logits: CtypesArray[ctypes.c_int8]
_fields_ = [
("n_tokens", ctypes.c_int32),
("token", ctypes.POINTER(llama_token)),
("embd", ctypes.POINTER(ctypes.c_float)),
("pos", ctypes.POINTER(llama_pos)),
("n_seq_id", ctypes.POINTER(ctypes.c_int32)),
("seq_id", ctypes.POINTER(ctypes.POINTER(llama_seq_id))),
("logits", ctypes.POINTER(ctypes.c_int8)),
]
# enum llama_model_kv_override_type {
# LLAMA_KV_OVERRIDE_TYPE_INT,
# LLAMA_KV_OVERRIDE_TYPE_FLOAT,
# LLAMA_KV_OVERRIDE_TYPE_BOOL,
# LLAMA_KV_OVERRIDE_TYPE_STR,
# };
LLAMA_KV_OVERRIDE_TYPE_INT = 0
LLAMA_KV_OVERRIDE_TYPE_FLOAT = 1
LLAMA_KV_OVERRIDE_TYPE_BOOL = 2
LLAMA_KV_OVERRIDE_TYPE_STR = 3
# struct llama_model_kv_override {
# enum llama_model_kv_override_type tag;
# char key[128];
# union {
# int64_t val_i64;
# double val_f64;
# bool val_bool;
# char val_str[128];
# };
# };
class llama_model_kv_override_value(ctypes.Union):
_fields_ = [
("val_i64", ctypes.c_int64),
("val_f64", ctypes.c_double),
("val_bool", ctypes.c_bool),
("val_str", ctypes.c_char * 128),
]
if TYPE_CHECKING:
val_i64: int
val_f64: float
val_bool: bool
val_str: bytes
class llama_model_kv_override(ctypes.Structure):
_fields_ = [
("tag", ctypes.c_int),
("key", ctypes.c_char * 128),
("value", llama_model_kv_override_value),
]
if TYPE_CHECKING:
tag: int
key: bytes
value: Union[int, float, bool, bytes]
# struct llama_model_tensor_buft_override {
# const char * pattern;
# ggml_backend_buffer_type_t buft;
# };
# struct llama_model_params {
# // NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
# ggml_backend_dev_t * devices;
# // NULL-terminated list of buffer types to use for tensors that match a pattern
# const struct llama_model_tensor_buft_override * tensor_buft_overrides;
# int32_t n_gpu_layers; // number of layers to store in VRAM
# enum llama_split_mode split_mode; // how to split the model across multiple GPUs
# // the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE
# int32_t main_gpu;
# // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
# const float * tensor_split;
# // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
# // If the provided progress_callback returns true, model loading continues.
# // If it returns false, model loading is immediately aborted.
# llama_progress_callback progress_callback;
# // context pointer passed to the progress callback
# void * progress_callback_user_data;
# // override key-value pairs of the model meta data
# const struct llama_model_kv_override * kv_overrides;
# // Keep the booleans together to avoid misalignment during copy-by-value.
# bool vocab_only; // only load the vocabulary, no weights
# bool use_mmap; // use mmap if possible
# bool use_mlock; // force system to keep model in RAM
# bool check_tensors; // validate model tensor data
# };
class llama_model_params(ctypes.Structure):
"""Parameters for llama_model
Attributes:
devices (ctypes.Array[ggml_backend_dev_t]): NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
tensor_buft_overrides (ctypes.Array[llama_model_tensor_buft_override]): NULL-terminated list of buffer types to use for tensors that match a pattern
n_gpu_layers (int): number of layers to store in VRAM
split_mode (int): how to split the model across multiple GPUs
main_gpu (int): the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE
tensor_split (ctypes.Array[ctypes.ctypes.c_float]): proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
progress_callback (llama_progress_callback): called with a progress value between 0.0 and 1.0. Pass NULL to disable. If the provided progress_callback returns true, model loading continues. If it returns false, model loading is immediately aborted.
progress_callback_user_data (ctypes.ctypes.c_void_p): context pointer passed to the progress callback
kv_overrides (ctypes.Array[llama_model_kv_override]): override key-value pairs of the model meta data
vocab_only (bool): only load the vocabulary, no weights
use_mmap (bool): use mmap if possible
use_mlock (bool): force system to keep model in RAM
check_tensors (bool): validate model tensor data"""
if TYPE_CHECKING:
devices: CtypesArray[ctypes.c_void_p] # NOTE: unused
tensor_buft_overrides: CtypesArray[llama_model_tensor_buft_override] # NOTE: unused
n_gpu_layers: int
split_mode: int
main_gpu: int
tensor_split: CtypesArray[ctypes.c_float]
progress_callback: Callable[[float, ctypes.c_void_p], bool]
progress_callback_user_data: ctypes.c_void_p
kv_overrides: CtypesArray[llama_model_kv_override]
vocab_only: bool
use_mmap: bool
use_mlock: bool
check_tensors: bool
_fields_ = [
("devices", ctypes.c_void_p), # NOTE: unnused
("tensor_buft_overrides", ctypes.c_void_p), # NOTE: unused
("n_gpu_layers", ctypes.c_int32),
("split_mode", ctypes.c_int),
("main_gpu", ctypes.c_int32),
("tensor_split", ctypes.POINTER(ctypes.c_float)),
("progress_callback", llama_progress_callback),
("progress_callback_user_data", ctypes.c_void_p),
("kv_overrides", ctypes.POINTER(llama_model_kv_override)),
("vocab_only", ctypes.c_bool),
("use_mmap", ctypes.c_bool),
("use_mlock", ctypes.c_bool),
("check_tensors", ctypes.c_bool),
]
# // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
# // https://github.com/ggml-org/llama.cpp/pull/7544
# struct llama_context_params {
# uint32_t n_ctx; // text context, 0 = from model
# uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
# uint32_t n_ubatch; // physical maximum batch size
# uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
# int32_t n_threads; // number of threads to use for generation
# int32_t n_threads_batch; // number of threads to use for batch processing
# enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
# enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
# enum llama_attention_type attention_type; // attention type to use for embeddings
# // ref: https://github.com/ggml-org/llama.cpp/pull/2054
# float rope_freq_base; // RoPE base frequency, 0 = from model
# float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
# float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
# float yarn_attn_factor; // YaRN magnitude scaling factor
# float yarn_beta_fast; // YaRN low correction dim
# float yarn_beta_slow; // YaRN high correction dim
# uint32_t yarn_orig_ctx; // YaRN original context size
# float defrag_thold; // defragment the KV cache if holes/size > thold, <= 0 disabled (default)
# ggml_backend_sched_eval_callback cb_eval;
# void * cb_eval_user_data;
# enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
# enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
# // Abort callback
# // if it returns true, execution of llama_decode() will be aborted
# // currently works only with CPU execution
# ggml_abort_callback abort_callback;
# void * abort_callback_data;
# // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
# bool embeddings; // if true, extract embeddings (together with logits)
# bool offload_kqv; // offload the KQV ops (including the KV cache) to GPU
# bool flash_attn; // use flash attention [EXPERIMENTAL]
# bool no_perf; // measure performance timings
# bool op_offload; // offload host tensor operations to device
# bool swa_full; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
# // NOTE: setting to false when n_seq_max > 1 can cause bad performance in some cases
# // ref: https://github.com/ggml-org/llama.cpp/pull/13845#issuecomment-2924800573
# };
class llama_context_params(ctypes.Structure):
"""Parameters for llama_context
Attributes:
n_ctx (int): text context, 0 = from model
n_batch (int): logical maximum batch size that can be submitted to llama_decode
n_ubatch (int): physical maximum batch size
n_seq_max (int): max number of sequences (i.e. distinct states for recurrent models)
n_threads (int): number of threads to use for generation
n_threads_batch (int): number of threads to use for batch processing
rope_scaling_type (int): RoPE scaling type, from `enum llama_rope_scaling_type`
pooling_type (int): whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)
attention_type (int): attention type to use for embeddings
rope_freq_base (float): RoPE base frequency, 0 = from model
rope_freq_scale (float): RoPE frequency scaling factor, 0 = from model
yarn_ext_factor (float): YaRN extrapolation mix factor, negative = from model
yarn_attn_factor (float): YaRN magnitude scaling factor
yarn_beta_fast (float): YaRN low correction dim
yarn_beta_slow (float): YaRN high correction dim
yarn_orig_ctx (int): YaRN original context size
defrag_thold (float): defragment the KV cache if holes/size > thold, <= 0 disabled (default)
cb_eval (ggml_backend_sched_eval_callback): callback for scheduling eval
cb_eval_user_data (ctypes.ctypes.c_void_p): user data for cb_eval
type_k (int): data type for K cache
type_v (int): data type for V cache
abort_callback (ggml_abort_callback): abort callback if it returns true, execution of llama_decode() will be aborted
abort_callback_data (ctypes.ctypes.c_void_p): data for abort_callback
embeddings (bool): if true, extract embeddings (together with logits)
offload_kqv (bool): whether to offload the KQV ops (including the KV cache) to GPU
flash_attn (bool): whether to use flash attention
no_perf (bool): whether to measure performance timings
op_offload (bool): offload host tensor operations to device
swa_full (bool): use full-size SWA cache
"""
if TYPE_CHECKING:
n_ctx: int
n_batch: int
n_ubatch: int
n_seq_max: int
n_threads: int
n_threads_batch: int
rope_scaling_type: int
pooling_type: int
attention_type: int
rope_freq_base: float
rope_freq_scale: float
yarn_ext_factor: float
yarn_attn_factor: float
yarn_beta_fast: float
yarn_beta_slow: float
yarn_orig_ctx: int
defrag_thold: float
cb_eval: Callable[[ctypes.c_void_p, bool], bool]
cb_eval_user_data: ctypes.c_void_p
type_k: int
type_v: int
abort_callback: Callable[[ctypes.c_void_p], bool]
abort_callback_data: ctypes.c_void_p
embeddings: bool
offload_kqv: bool
flash_attn: bool
no_perf: bool
op_offload: bool
swa_full: bool
_fields_ = [
("n_ctx", ctypes.c_uint32),
("n_batch", ctypes.c_uint32),
("n_ubatch", ctypes.c_uint32),
("n_seq_max", ctypes.c_uint32),
("n_threads", ctypes.c_int32),
("n_threads_batch", ctypes.c_int32),
("rope_scaling_type", ctypes.c_int),
("pooling_type", ctypes.c_int),
("attention_type", ctypes.c_int),
("rope_freq_base", ctypes.c_float),
("rope_freq_scale", ctypes.c_float),
("yarn_ext_factor", ctypes.c_float),
("yarn_attn_factor", ctypes.c_float),
("yarn_beta_fast", ctypes.c_float),
("yarn_beta_slow", ctypes.c_float),
("yarn_orig_ctx", ctypes.c_uint32),
("defrag_thold", ctypes.c_float),
("cb_eval", ggml_backend_sched_eval_callback),
("cb_eval_user_data", ctypes.c_void_p),
("type_k", ctypes.c_int),
("type_v", ctypes.c_int),
("abort_callback", ggml_abort_callback),
("abort_callback_data", ctypes.c_void_p),
("embeddings", ctypes.c_bool),
("offload_kqv", ctypes.c_bool),
("flash_attn", ctypes.c_bool),
("no_perf", ctypes.c_bool),
("op_offload", ctypes.c_bool),
("swa_full", ctypes.c_bool),
]
# // Signature for logging events
# // Note that text includes the new line character at the end for most events.
# // If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
# // if it exists.
# // It might not exist for progress report where '.' is output repeatedly.
# typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
llama_log_callback = ctypes.CFUNCTYPE(
None, ctypes.c_int, ctypes.c_char_p, ctypes.c_void_p
)
"""Signature for logging events
Note that text includes the new line character at the end for most events.
If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
if it exists.
It might not exist for progress report where '.' is output repeatedly."""
# // model quantization parameters
# typedef struct llama_model_quantize_params {
# int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
# enum llama_ftype ftype; // quantize to this llama_ftype
# enum ggml_type output_tensor_type; // output tensor type
# enum ggml_type token_embedding_type; // token embeddings tensor type
# bool allow_requantize; // allow quantizing non-f32/f16 tensors
# bool quantize_output_tensor; // quantize output.weight
# bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
# bool pure; // quantize all tensors to the default type
# bool keep_split; // quantize to the same number of shards
# void * imatrix; // pointer to importance matrix data
# void * kv_overrides; // pointer to vector containing overrides
# void * tensor_types; // pointer to vector containing tensor types
# void * prune_layers; // pointer to vector containing layer indices to prune
# } llama_model_quantize_params;
class llama_model_quantize_params(ctypes.Structure):
"""Parameters for llama_model_quantize
Attributes:
nthread (int): number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
ftype (int): quantize to this llama_ftype
output_tensor_type (int): output tensor type
token_embedding_type (int): token embeddings tensor type
allow_requantize (bool): allow quantizing non-f32/f16 tensors
quantize_output_tensor (bool): quantize output.weight
only_copy (bool): only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
pure (bool): quantize all tensors to the default type
keep_split (bool): quantize to the same number of shards
imatrix (ctypes.c_void_p): pointer to importance matrix data
kv_overrides (ctypes.c_void_p): pointer to vector containing overrides
tensor_types (ctypes.c_void_p): pointer to vector containing tensor types
prune_layers (ctypes.c_void_p): pointer to vector containing layer indices to prune
"""
if TYPE_CHECKING:
nthread: int
ftype: int
output_tensor_type: int
token_embedding_type: int
allow_requantize: bool
quantize_output_tensor: bool
only_copy: bool
pure: bool
keep_split: bool
imatrix: ctypes.c_void_p
kv_overrides: ctypes.c_void_p
tensor_types: ctypes.c_void_p
prune_layers: ctypes.c_void_p
_fields_ = [
("nthread", ctypes.c_int32),
("ftype", ctypes.c_int),
("output_tensor_type", ctypes.c_int),
("token_embedding_type", ctypes.c_int),
("allow_requantize", ctypes.c_bool),
("quantize_output_tensor", ctypes.c_bool),
("only_copy", ctypes.c_bool),
("pure", ctypes.c_bool),
("keep_split", ctypes.c_bool),
("imatrix", ctypes.c_void_p),
("kv_overrides", ctypes.c_void_p),
("tensor_types", ctypes.c_void_p),
("prune_layers", ctypes.c_void_p),
]
# typedef struct llama_logit_bias {
# llama_token token;
# float bias;
# } llama_logit_bias;
class llama_logit_bias(ctypes.Structure):
"""Used to store logit bias
Attributes:
token (llama_token): token id
bias (float): bias"""
if TYPE_CHECKING:
token: llama_token
bias: float
_fields_ = [
("token", llama_token),
("bias", ctypes.c_float),
]
llama_logit_bias_p = ctypes.POINTER(llama_logit_bias)
# typedef struct llama_sampler_chain_params {
# bool no_perf; // whether to measure performance timings
# } llama_sampler_chain_params;
class llama_sampler_chain_params(ctypes.Structure):
"""Parameters for llama_sampler_chain
Attributes:
no_perf (bool): whether to measure performance timings"""
if TYPE_CHECKING:
no_perf: bool
_fields_ = [
("no_perf", ctypes.c_bool),
]
# // used in chat template
# typedef struct llama_chat_message {
# const char * role;
# const char * content;
# } llama_chat_message;
class llama_chat_message(ctypes.Structure):
_fields_ = [
("role", ctypes.c_char_p),
("content", ctypes.c_char_p),
]
# // lora adapter
# struct llama_adapter_lora;
llama_adapter_lora_p = ctypes.c_void_p
llama_adapter_lora_p_ctypes = ctypes.POINTER(ctypes.c_void_p)
# // Helpers for getting default parameters
# LLAMA_API struct llama_model_params llama_model_default_params(void);
@ctypes_function(
"llama_model_default_params",
[],
llama_model_params,
)
def llama_model_default_params() -> llama_model_params:
"""Get default parameters for llama_model"""
...
# LLAMA_API struct llama_context_params llama_context_default_params(void);
@ctypes_function(
"llama_context_default_params",
[],
llama_context_params,
)
def llama_context_default_params() -> llama_context_params:
"""Get default parameters for llama_context"""
...
# LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void);
@ctypes_function(
"llama_sampler_chain_default_params",
[],
llama_sampler_chain_params,
)
def llama_sampler_chain_default_params() -> llama_sampler_chain_params:
"""Get default parameters for llama_sampler_chain"""
...
# LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
@ctypes_function(
"llama_model_quantize_default_params",
[],
llama_model_quantize_params,
)
def llama_model_quantize_default_params() -> llama_model_quantize_params:
"""Get default parameters for llama_model_quantize"""
...
# // Initialize the llama + ggml backend
# // If numa is true, use NUMA optimizations
# // Call once at the start of the program
# LLAMA_API void llama_backend_init(void);
@ctypes_function(
"llama_backend_init",
[],
None,
)
def llama_backend_init():
"""Initialize the llama + ggml backend
Call once at the start of the program"""
...
# // numa strategies
# enum ggml_numa_strategy {
# GGML_NUMA_STRATEGY_DISABLED = 0,
# GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
# GGML_NUMA_STRATEGY_ISOLATE = 2,
# GGML_NUMA_STRATEGY_NUMACTL = 3,
# GGML_NUMA_STRATEGY_MIRROR = 4,
# GGML_NUMA_STRATEGY_COUNT
# };
GGML_NUMA_STRATEGY_DISABLED = 0
GGML_NUMA_STRATEGY_DISTRIBUTE = 1
GGML_NUMA_STRATEGY_ISOLATE = 2
GGML_NUMA_STRATEGY_NUMACTL = 3
GGML_NUMA_STRATEGY_MIRROR = 4
GGML_NUMA_STRATEGY_COUNT = 5
# // Call once at the end of the program - currently only used for MPI
# LLAMA_API void llama_backend_free(void);
@ctypes_function(
"llama_backend_free",
[],
None,
)
def llama_backend_free():
"""Call once at the end of the program - currently only used for MPI"""
...
# //optional:
# LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
@ctypes_function(
"llama_numa_init",
[ctypes.c_int],
None,
)
def llama_numa_init(numa: int, /):
...
# // Optional: an auto threadpool gets created in ggml if not passed explicitly
# LLAMA_API void llama_attach_threadpool(
# struct llama_context * ctx,
# ggml_threadpool_t threadpool,
# ggml_threadpool_t threadpool_batch);
# TODO: Add llama_attach_threadpool
# LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
# TODO: Add llama_detach_threadpool
# DEPRECATED(LLAMA_API struct llama_model * llama_load_model_from_file(
# const char * path_model,
# struct llama_model_params params),
# "use llama_model_load_from_file instead");
@ctypes_function(
"llama_load_model_from_file",
[ctypes.c_char_p, llama_model_params],
llama_model_p_ctypes,
)
def llama_load_model_from_file(
path_model: bytes, params: llama_model_params, /
) -> Optional[llama_model_p]:
...
# // Load the model from a file
# // If the file is split into multiple parts, the file name must follow this pattern: <name>-%05d-of-%05d.gguf
# // If the split file name does not follow this pattern, use llama_model_load_from_splits
# LLAMA_API struct llama_model * llama_model_load_from_file(
# const char * path_model,
# struct llama_model_params params);
@ctypes_function(
"llama_model_load_from_file",
[ctypes.c_char_p, llama_model_params],
llama_model_p_ctypes,
)
def llama_model_load_from_file(
path_model: bytes, params: llama_model_params, /
) -> Optional[llama_model_p]:
"""Load the model from a file
If the file is split into multiple parts, the file name must follow this pattern: <name>-%05d-of-%05d.gguf
If the split file name does not follow this pattern, use llama_model_load_from_splits"""
...
# // Load the model from multiple splits (support custom naming scheme)
# // The paths must be in the correct order
# LLAMA_API struct llama_model * llama_model_load_from_splits(
# const char ** paths,
# size_t n_paths,
# struct llama_model_params params);
@ctypes_function(
"llama_model_load_from_splits",
[ctypes.POINTER(ctypes.c_char_p), ctypes.c_size_t, llama_model_params],
llama_model_p_ctypes,
)
def llama_model_load_from_splits(
paths: List[bytes], n_paths: int, params: llama_model_params, /
) -> Optional[llama_model_p]:
"""Load the model from multiple splits (support custom naming scheme)
The paths must be in the correct order"""
...
# LLAMA_API void llama_model_save_to_file(
# const struct llama_model * model,
# const char * path_model);
@ctypes_function(
"llama_model_save_to_file",
[llama_model_p_ctypes, ctypes.c_char_p],
None,
)
def llama_model_save_to_file(model: llama_model_p, path_model: bytes, /):
"""Save the model to a file"""
...
# DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model),
# "use llama_model_free instead");
@ctypes_function(
"llama_free_model",
[llama_model_p_ctypes],
None,
)
def llama_free_model(model: llama_model_p, /):
...
# LLAMA_API void llama_model_free(struct llama_model * model);
@ctypes_function(
"llama_model_free",
[llama_model_p_ctypes],
None,
)
def llama_model_free(model: llama_model_p, /):
...
# LLAMA_API struct llama_context * llama_init_from_model(
# struct llama_model * model,
# struct llama_context_params params);
@ctypes_function(
"llama_init_from_model",
[llama_model_p_ctypes, llama_context_params],
llama_context_p_ctypes,
)
def llama_init_from_model(
model: llama_model_p, params: llama_context_params, /
) -> Optional[llama_context_p]:
...
# DEPRECATED(LLAMA_API struct llama_context * llama_new_context_with_model(
# struct llama_model * model,
# struct llama_context_params params),
# "use llama_init_from_model instead");
@ctypes_function(
"llama_new_context_with_model",
[llama_model_p_ctypes, llama_context_params],
llama_context_p_ctypes,
)
def llama_new_context_with_model(
model: llama_model_p, params: llama_context_params, /
) -> Optional[llama_context_p]:
...
# // Frees all allocated memory
# LLAMA_API void llama_free(struct llama_context * ctx);
@ctypes_function(
"llama_free",
[llama_context_p_ctypes],
None,
)
def llama_free(ctx: llama_context_p, /):
"""Frees all allocated memory"""
...
# LLAMA_API int64_t llama_time_us(void);
@ctypes_function(
"llama_time_us",
[],
ctypes.c_int64,
)
def llama_time_us() -> int:
...
# LLAMA_API size_t llama_max_devices(void);
@ctypes_function("llama_max_devices", [], ctypes.c_size_t)
def llama_max_devices() -> int:
...
# LLAMA_API size_t llama_max_parallel_sequences(void);
@ctypes_function("llama_max_parallel_sequences", [], ctypes.c_size_t)
def llama_max_parallel_sequences() -> int:
...
# LLAMA_API bool llama_supports_mmap (void);
@ctypes_function("llama_supports_mmap", [], ctypes.c_bool)
def llama_supports_mmap() -> bool:
...
# LLAMA_API bool llama_supports_mlock (void);
@ctypes_function("llama_supports_mlock", [], ctypes.c_bool)
def llama_supports_mlock() -> bool:
...
# LLAMA_API bool llama_supports_gpu_offload(void);
@ctypes_function("llama_supports_gpu_offload", [], ctypes.c_bool)
def llama_supports_gpu_offload() -> bool:
...
# LLAMA_API bool llama_supports_rpc (void);
@ctypes_function("llama_supports_rpc", [], ctypes.c_bool)
def llama_supports_rpc() -> bool:
...
# LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
@ctypes_function("llama_n_ctx", [llama_context_p_ctypes], ctypes.c_uint32)
def llama_n_ctx(ctx: llama_context_p, /) -> int:
...
# LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
@ctypes_function("llama_n_batch", [llama_context_p_ctypes], ctypes.c_uint32)
def llama_n_batch(ctx: llama_context_p, /) -> int:
...
# LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
@ctypes_function("llama_n_ubatch", [llama_context_p_ctypes], ctypes.c_uint32)
def llama_n_ubatch(ctx: llama_context_p, /) -> int:
...
# LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
@ctypes_function("llama_n_seq_max", [llama_context_p_ctypes], ctypes.c_uint32)
def llama_n_seq_max(ctx: llama_context_p, /) -> int:
...
# DEPRECATED(LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model), "use llama_model_n_ctx_train instead");
@ctypes_function("llama_n_ctx_train", [llama_model_p_ctypes], ctypes.c_int32)
def llama_n_ctx_train(model: llama_model_p, /) -> int:
...
# DEPRECATED(LLAMA_API int32_t llama_n_embd (const struct llama_model * model), "use llama_model_n_embd instead");
@ctypes_function("llama_n_embd", [llama_model_p_ctypes], ctypes.c_int32)
def llama_n_embd(model: llama_model_p, /) -> int:
...
# DEPRECATED(LLAMA_API int32_t llama_n_layer (const struct llama_model * model), "use llama_model_n_layer instead");
@ctypes_function("llama_n_layer", [llama_model_p_ctypes], ctypes.c_int32)
def llama_n_layer(model: llama_model_p, /) -> int:
...
# DEPRECATED(LLAMA_API int32_t llama_n_head (const struct llama_model * model), "use llama_model_n_head instead");
@ctypes_function("llama_n_head", [llama_model_p_ctypes], ctypes.c_int32)
def llama_n_head(model: llama_model_p, /) -> int:
...
# DEPRECATED(LLAMA_API int32_t llama_n_vocab (const struct llama_vocab * vocab), "use llama_vocab_n_tokens instead");
@ctypes_function("llama_n_vocab", [llama_vocab_p_ctypes], ctypes.c_int32)
def llama_n_vocab(model: llama_vocab_p, /) -> int:
...
# LLAMA_API const struct llama_model * llama_get_model (const struct llama_context * ctx);
@ctypes_function("llama_get_model", [llama_context_p_ctypes], llama_model_p_ctypes)
def llama_get_model(ctx: llama_context_p, /) -> Optional[llama_model_p]:
...
# LLAMA_API llama_memory_t llama_get_memory (const struct llama_context * ctx);
@ctypes_function("llama_get_memory", [llama_context_p_ctypes], llama_memory_t_ctypes)
def llama_get_memory(ctx: llama_context_p, /) -> Optional[llama_memory_t]:
"""Get the memory for the context"""
...
# LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
@ctypes_function("llama_pooling_type", [llama_context_p_ctypes], ctypes.c_int)
def llama_pooling_type(ctx: llama_context_p, /) -> int:
...
# DEPRECATED(LLAMA_API struct llama_kv_cache * llama_get_kv_self(struct llama_context * ctx), "use llama_get_memory instead");
@ctypes_function(
"llama_get_kv_self",
[llama_context_p_ctypes],
llama_kv_cache_p_ctypes,
)
def llama_get_kv_self(ctx: llama_context_p, /) -> Optional[llama_kv_cache_p]:
"""Get the KV cache for self-attention (DEPRECATED)"""
...
# LLAMA_API const struct llama_vocab * llama_model_get_vocab(const struct llama_model * model);
@ctypes_function("llama_model_get_vocab", [llama_model_p_ctypes], llama_vocab_p_ctypes)
def llama_model_get_vocab(model: llama_model_p, /) -> Optional[llama_vocab_p]:
...
# LLAMA_API enum llama_rope_type llama_model_rope_type(const struct llama_model * model);
@ctypes_function("llama_model_rope_type", [llama_model_p_ctypes], ctypes.c_int)
def llama_model_rope_type(model: llama_model_p, /) -> int:
...
# LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
@ctypes_function("llama_model_n_ctx_train", [llama_model_p_ctypes], ctypes.c_int32)
def llama_model_n_ctx_train(model: llama_model_p, /) -> int:
...
# LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
@ctypes_function("llama_model_n_embd", [llama_model_p_ctypes], ctypes.c_int32)
def llama_model_n_embd(model: llama_model_p, /) -> int:
...
# LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
@ctypes_function("llama_model_n_layer", [llama_model_p_ctypes], ctypes.c_int32)
def llama_model_n_layer(model: llama_model_p, /) -> int:
...
# LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
@ctypes_function("llama_model_n_head", [llama_model_p_ctypes], ctypes.c_int32)
def llama_model_n_head(model: llama_model_p, /) -> int:
...
# LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model);
@ctypes_function("llama_model_n_head_kv", [llama_model_p_ctypes], ctypes.c_int32)
def llama_model_n_head_kv(model: llama_model_p, /) -> int:
...
# LLAMA_API int32_t llama_model_n_swa (const struct llama_model * model);
@ctypes_function("llama_model_n_swa", [llama_model_p_ctypes], ctypes.c_int32)
def llama_model_n_swa(model: llama_model_p, /) -> int:
...
# // Get the model's RoPE frequency scaling factor
# LLAMA_API float llama_model_rope_freq_scale_train(const struct llama_model * model);
@ctypes_function("llama_model_rope_freq_scale_train", [llama_model_p_ctypes], ctypes.c_float)
def llama_model_rope_freq_scale_train(model: llama_model_p, /) -> float:
...
# // Returns the number of classifier outputs (only valid for classifier models)
# // Undefined behavior for non-classifier models
# LLAMA_API uint32_t llama_model_n_cls_out(const struct llama_model * model);
@ctypes_function("llama_model_n_cls_out", [llama_model_p_ctypes], ctypes.c_uint32)
def llama_model_n_cls_out(model: llama_model_p, /) -> int:
"""Returns the number of classifier outputs (only valid for classifier models)"""
...
# // Returns label of classifier output by index (<n_cls_out). Returns nullptr if no label provided
# LLAMA_API const char * llama_model_cls_label(const struct llama_model * model, uint32_t i);
@ctypes_function("llama_model_cls_label", [llama_model_p_ctypes, ctypes.c_uint32], ctypes.c_char_p)
def llama_model_cls_label(model: llama_model_p, i: int, /) -> Optional[bytes]:
"""Returns label of classifier output by index. Returns None if no label provided"""
...
# LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
@ctypes_function("llama_vocab_type", [llama_vocab_p_ctypes], ctypes.c_int)
def llama_vocab_type(vocab: llama_vocab_p, /) -> int:
...
# LLAMA_API int32_t llama_vocab_n_tokens(const struct llama_vocab * vocab);
@ctypes_function("llama_vocab_n_tokens", [llama_vocab_p_ctypes], ctypes.c_int32)
def llama_vocab_n_tokens(vocab: llama_vocab_p, /) -> int:
...
# // Functions to access the model's GGUF metadata scalar values
# // - The functions return the length of the string on success, or -1 on failure
# // - The output string is always null-terminated and cleared on failure
# // - When retrieving a string, an extra byte must be allocated to account for the null terminator
# // - GGUF array values are not supported by these functions
# // Get metadata value as a string by key name
# LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
@ctypes_function(
"llama_model_meta_val_str",
[
llama_model_p_ctypes,
ctypes.c_char_p,
ctypes.c_char_p,
ctypes.c_size_t,
],
ctypes.c_int32,
)
def llama_model_meta_val_str(
model: llama_model_p,
key: Union[ctypes.c_char_p, bytes],
buf: bytes,
buf_size: int,
/,
) -> int:
"""Get metadata value as a string by key name"""
...
# // Get the number of metadata key/value pairs
# LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
@ctypes_function("llama_model_meta_count", [llama_model_p_ctypes], ctypes.c_int32)
def llama_model_meta_count(model: llama_model_p, /) -> int:
"""Get the number of metadata key/value pairs"""
...
# // Get metadata key name by index
# LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
@ctypes_function(
"llama_model_meta_key_by_index",
[
llama_model_p_ctypes,
ctypes.c_int32,
ctypes.c_char_p,
ctypes.c_size_t,
],
ctypes.c_int32,
)
def llama_model_meta_key_by_index(
model: llama_model_p,
i: Union[ctypes.c_int, int],
buf: Union[bytes, CtypesArray[ctypes.c_char]],
buf_size: int,
/,
) -> int:
"""Get metadata key name by index"""
...
# // Get metadata value as a string by index
# LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
@ctypes_function(
"llama_model_meta_val_str_by_index",
[
llama_model_p_ctypes,
ctypes.c_int32,
ctypes.c_char_p,
ctypes.c_size_t,
],
ctypes.c_int32,
)
def llama_model_meta_val_str_by_index(
model: llama_model_p,
i: Union[ctypes.c_int, int],
buf: Union[bytes, CtypesArray[ctypes.c_char]],
buf_size: int,
/,
) -> int:
"""Get metadata value as a string by index"""
...
# // Get a string describing the model type
# LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
@ctypes_function(
"llama_model_desc",
[llama_model_p_ctypes, ctypes.c_char_p, ctypes.c_size_t],
ctypes.c_int32,
)
def llama_model_desc(
model: llama_model_p,
buf: Union[bytes, CtypesArray[ctypes.c_char]],
buf_size: Union[ctypes.c_size_t, int],
/,
) -> int:
"""Get a string describing the model type"""
...
# // Returns the total size of all the tensors in the model in bytes
# LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
@ctypes_function("llama_model_size", [llama_model_p_ctypes], ctypes.c_uint64)
def llama_model_size(model: llama_model_p, /) -> int:
"""Returns the total size of all the tensors in the model in bytes"""
...
# // Get the default chat template. Returns nullptr if not available
# // If name is NULL, returns the default chat template
# LLAMA_API const char * llama_model_chat_template(const struct llama_model * model, const char * name);
@ctypes_function("llama_model_chat_template", [llama_model_p_ctypes, ctypes.c_char_p], ctypes.c_char_p)
def llama_model_chat_template(model: llama_model_p, name: Optional[bytes], /) -> Optional[bytes]:
"""Get the default chat template. Returns None if not available
If name is None, returns the default chat template"""
...
# // Returns the total number of parameters in the model
# LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
@ctypes_function("llama_model_n_params", [llama_model_p_ctypes], ctypes.c_uint64)
def llama_model_n_params(model: llama_model_p, /) -> int:
"""Returns the total number of parameters in the model"""
...
# // Returns true if the model contains an encoder that requires llama_encode() call
# LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
@ctypes_function("llama_model_has_encoder", [llama_model_p_ctypes], ctypes.c_bool)
def llama_model_has_encoder(model: llama_model_p, /) -> bool:
"""Returns true if the model contains an encoder that requires llama_encode() call"""
...
# // Returns true if the model contains a decoder that requires llama_decode() call
# LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);
@ctypes_function("llama_model_has_decoder", [llama_model_p_ctypes], ctypes.c_bool)
def llama_model_has_decoder(model: llama_model_p, /) -> bool:
"""Returns true if the model contains a decoder that requires llama_decode() call"""
...
# // For encoder-decoder models, this function returns id of the token that must be provided
# // to the decoder to start generating output sequence. For other models, it returns -1.
# LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
@ctypes_function(
"llama_model_decoder_start_token", [llama_model_p_ctypes], ctypes.c_int32
)
def llama_model_decoder_start_token(model: llama_model_p, /) -> int:
"""For encoder-decoder models, this function returns id of the token that must be provided
to the decoder to start generating output sequence. For other models, it returns -1.
"""
...
# // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
# LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
@ctypes_function("llama_model_is_recurrent", [llama_model_p_ctypes], ctypes.c_bool)
def llama_model_is_recurrent(model: llama_model_p, /) -> bool:
"""Returns true if the model is recurrent (like Mamba, RWKV, etc.)"""
...
# // Returns 0 on success
# LLAMA_API uint32_t llama_model_quantize(
# const char * fname_inp,
# const char * fname_out,
# const llama_model_quantize_params * params);
@ctypes_function(
"llama_model_quantize",
[
ctypes.c_char_p,
ctypes.c_char_p,
ctypes.POINTER(llama_model_quantize_params),
],
ctypes.c_uint32,
)
def llama_model_quantize(
fname_inp: bytes,
fname_out: bytes,
params: CtypesPointerOrRef[llama_model_quantize_params],
/,
) -> int:
"""Returns 0 on success"""
...
# //
# // Adapters
# //
# // Load a LoRA adapter from file
# LLAMA_API struct llama_adapter_lora * llama_adapter_lora_init(
# struct llama_model * model,
# const char * path_lora);
@ctypes_function(
"llama_adapter_lora_init",
[llama_model_p_ctypes, ctypes.c_char_p],
llama_adapter_lora_p_ctypes,
)
def llama_adapter_lora_init(
model: llama_model_p, path_lora: bytes, /
) -> Optional[llama_adapter_lora_p]:
...
# // Manually free a LoRA adapter
# // Note: loaded adapters will be free when the associated model is deleted
# LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter);
@ctypes_function(
"llama_adapter_lora_free",
[llama_adapter_lora_p_ctypes],
None,
)
def llama_adapter_lora_free(adapter: llama_adapter_lora_p, /):
...
# // The following functions operate on a llama_context, hence the naming: llama_verb_...
# // Add a loaded LoRA adapter to given context
# // This will not modify model's weight
# LLAMA_API int32_t llama_set_adapter_lora(
# struct llama_context * ctx,
# struct llama_adapter_lora * adapter,
# float scale);
@ctypes_function(
"llama_set_adapter_lora",
[llama_context_p_ctypes, llama_adapter_lora_p_ctypes, ctypes.c_float],
ctypes.c_int32,
)
def llama_set_adapter_lora(
ctx: llama_context_p, adapter: llama_adapter_lora_p, scale: float, /
) -> int:
"""Add a loaded LoRA adapter to given context
This will not modify model's weight"""
...
# // Remove a specific LoRA adapter from given context
# // Return -1 if the adapter is not present in the context
# LLAMA_API int32_t llama_rm_adapter_lora(
# struct llama_context * ctx,
# struct llama_adapter_lora * adapter);
@ctypes_function(
"llama_rm_adapter_lora",
[llama_context_p_ctypes, llama_adapter_lora_p_ctypes],
ctypes.c_int32,
)
def llama_rm_adapter_lora(
ctx: llama_context_p, adapter: llama_adapter_lora_p, /
) -> int:
"""Remove a specific LoRA adapter from given context
Return -1 if the adapter is not present in the context"""
...
# // Remove all LoRA adapters from given context
# LLAMA_API void llama_clear_adapter_lora(struct llama_context * ctx);
@ctypes_function(
"llama_clear_adapter_lora",
[llama_context_p_ctypes],
None,
)
def llama_clear_adapter_lora(ctx: llama_context_p, /):
"""Remove all LoRA adapters from given context"""
...
# // Apply a loaded control vector to a llama_context, or if data is NULL, clear
# // the currently loaded vector.
# // n_embd should be the size of a single layer's control, and data should point
# // to an n_embd x n_layers buffer starting from layer 1.
# // il_start and il_end are the layer range the vector should apply to (both inclusive)
# // See llama_control_vector_load in common to load a control vector.
# LLAMA_API int32_t llama_apply_adapter_cvec(
# struct llama_context * ctx,
# const float * data,
# size_t len,
# int32_t n_embd,
# int32_t il_start,
# int32_t il_end);
@ctypes_function(
"llama_apply_adapter_cvec",
[
llama_context_p_ctypes,
ctypes.POINTER(ctypes.c_float),
ctypes.c_size_t,
ctypes.c_int32,
ctypes.c_int32,
ctypes.c_int32,
],
ctypes.c_int32,
)
def llama_apply_adapter_cvec(
ctx: llama_context_p,
data: CtypesPointerOrRef[ctypes.c_float],
len: int,
n_embd: int,
il_start: int,
il_end: int,
/,
) -> int:
"""Apply a loaded control vector to a llama_context, or if data is NULL, clear
the currently loaded vector.
n_embd should be the size of a single layer's control, and data should point
to an n_embd x n_layers buffer starting from layer 1.
il_start and il_end are the layer range the vector should apply to (both inclusive)
See llama_control_vector_load in common to load a control vector."""
...
# //
# // Memory
# //
# // Clear the memory contents
# // If data == true, the data buffers will also be cleared together with the metadata
# LLAMA_API void llama_memory_clear(
# llama_memory_t mem,
# bool data);
@ctypes_function(
"llama_memory_clear",
[llama_memory_t_ctypes, ctypes.c_bool],
None,
)
def llama_memory_clear(mem: llama_memory_t, data: bool, /):
"""Clear the memory contents
If data == true, the data buffers will also be cleared together with the metadata"""
...
# // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
# // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
# // seq_id < 0 : match any sequence
# // p0 < 0 : [0, p1]
# // p1 < 0 : [p0, inf)
# LLAMA_API bool llama_memory_seq_rm(
# llama_memory_t mem,
# llama_seq_id seq_id,
# llama_pos p0,
# llama_pos p1);
@ctypes_function(
"llama_memory_seq_rm",
[
llama_memory_t_ctypes,
llama_seq_id,
llama_pos,
llama_pos,
],
ctypes.c_bool,
)
def llama_memory_seq_rm(
mem: llama_memory_t,
seq_id: Union[llama_seq_id, int],
p0: Union[llama_pos, int],
p1: Union[llama_pos, int],
/,
) -> bool:
"""Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
seq_id < 0 : match any sequence
p0 < 0 : [0, p1]
p1 < 0 : [p0, inf)"""
...
# // Copy all tokens that belong to the specified sequence to another sequence
# // p0 < 0 : [0, p1]
# // p1 < 0 : [p0, inf)
# LLAMA_API void llama_memory_seq_cp(
# llama_memory_t mem,
# llama_seq_id seq_id_src,
# llama_seq_id seq_id_dst,
# llama_pos p0,
# llama_pos p1);
@ctypes_function(
"llama_memory_seq_cp",
[
llama_memory_t_ctypes,
llama_seq_id,
llama_seq_id,
llama_pos,
llama_pos,
],
None,
)
def llama_memory_seq_cp(
mem: llama_memory_t,
seq_id_src: Union[llama_seq_id, int],
seq_id_dst: Union[llama_seq_id, int],
p0: Union[llama_pos, int],
p1: Union[llama_pos, int],
/,
):
"""Copy all tokens that belong to the specified sequence to another sequence
p0 < 0 : [0, p1]
p1 < 0 : [p0, inf)"""
...
# // Removes all tokens that do not belong to the specified sequence
# LLAMA_API void llama_memory_seq_keep(
# llama_memory_t mem,
# llama_seq_id seq_id);
@ctypes_function(
"llama_memory_seq_keep", [llama_memory_t_ctypes, llama_seq_id], None
)
def llama_memory_seq_keep(mem: llama_memory_t, seq_id: Union[llama_seq_id, int], /):
"""Removes all tokens that do not belong to the specified sequence"""
...
# // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
# // p0 < 0 : [0, p1]
# // p1 < 0 : [p0, inf)
# LLAMA_API void llama_memory_seq_add(
# llama_memory_t mem,
# llama_seq_id seq_id,
# llama_pos p0,
# llama_pos p1,
# llama_pos delta);
@ctypes_function(
"llama_memory_seq_add",
[
llama_memory_t_ctypes,
llama_seq_id,
llama_pos,
llama_pos,
llama_pos,
],
None,
)
def llama_memory_seq_add(
mem: llama_memory_t,
seq_id: Union[llama_seq_id, int],
p0: Union[llama_pos, int],
p1: Union[llama_pos, int],
delta: Union[llama_pos, int],
/,
):
"""Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
p0 < 0 : [0, p1]
p1 < 0 : [p0, inf)"""
...
# // Integer division of the positions by factor of `d > 1`
# // p0 < 0 : [0, p1]
# // p1 < 0 : [p0, inf)
# LLAMA_API void llama_memory_seq_div(
# llama_memory_t mem,
# llama_seq_id seq_id,
# llama_pos p0,
# llama_pos p1,
# int d);
@ctypes_function(
"llama_memory_seq_div",
[
llama_memory_t_ctypes,
llama_seq_id,
llama_pos,
llama_pos,
ctypes.c_int,
],
None,
)
def llama_memory_seq_div(
mem: llama_memory_t,
seq_id: Union[llama_seq_id, int],
p0: Union[llama_pos, int],
p1: Union[llama_pos, int],
d: Union[ctypes.c_int, int],
/,
):
"""Integer division of the positions by factor of `d > 1`
p0 < 0 : [0, p1]
p1 < 0 : [p0, inf)"""
...
# // Returns the smallest position present in the memory for the specified sequence
# // This is typically non-zero only for SWA caches
# // Note that all positions in the range [pos_min, pos_max] are guaranteed to be present in the memory
# // Return -1 if the sequence is empty
# LLAMA_API llama_pos llama_memory_seq_pos_min(
# llama_memory_t mem,
# llama_seq_id seq_id);
@ctypes_function(
"llama_memory_seq_pos_min", [llama_memory_t_ctypes, llama_seq_id], llama_pos
)
def llama_memory_seq_pos_min(
mem: llama_memory_t, seq_id: Union[llama_seq_id, int], /
) -> int:
"""Returns the smallest position present in the memory for the specified sequence
This is typically non-zero only for SWA caches
Return -1 if the sequence is empty"""
...
# // Returns the largest position present in the memory for the specified sequence
# // Note that all positions in the range [pos_min, pos_max] are guaranteed to be present in the memory
# // Return -1 if the sequence is empty
# LLAMA_API llama_pos llama_memory_seq_pos_max(
# llama_memory_t mem,
# llama_seq_id seq_id);
@ctypes_function(
"llama_memory_seq_pos_max", [llama_memory_t_ctypes, llama_seq_id], llama_pos
)
def llama_memory_seq_pos_max(
mem: llama_memory_t, seq_id: Union[llama_seq_id, int], /
) -> int:
"""Returns the largest position present in the memory for the specified sequence
Return -1 if the sequence is empty"""
...
# // Check if the memory supports shifting
# LLAMA_API bool llama_memory_can_shift(llama_memory_t mem);
@ctypes_function("llama_memory_can_shift", [llama_memory_t_ctypes], ctypes.c_bool)
def llama_memory_can_shift(mem: llama_memory_t, /) -> bool:
"""Check if the memory supports shifting"""
...
# //
# // KV cache for self-attention (TODO: deprecate in favor of llama_memory)
# //
# // Returns the number of tokens in the KV cache (slow, use only for debug)
# // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
# DEPRECATED(LLAMA_API int32_t llama_kv_self_n_tokens(const struct llama_context * ctx),
# "Use llama_kv_self_seq_pos_max() and llama_kv_self_seq_pos_min() instead (https://github.com/ggml-org/llama.cpp/issues/13793)");
@ctypes_function(
"llama_kv_self_n_tokens", [llama_context_p_ctypes], ctypes.c_int32
)
def llama_kv_self_n_tokens(ctx: llama_context_p, /) -> int:
"""Returns the number of tokens in the KV cache (slow, use only for debug) (DEPRECATED)"""
...
# // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
# DEPRECATED(LLAMA_API int32_t llama_kv_self_used_cells(const struct llama_context * ctx),
# "Use llama_kv_self_seq_pos_max() and llama_kv_self_seq_pos_min() instead (https://github.com/ggml-org/llama.cpp/issues/13793)");
@ctypes_function(
"llama_kv_self_used_cells", [llama_context_p_ctypes], ctypes.c_int32
)
def llama_kv_self_used_cells(ctx: llama_context_p, /) -> int:
"""Returns the number of used KV cells (DEPRECATED)"""
...
# // Clear the KV cache - both cell info is erased and KV data is zeroed
# DEPRECATED(LLAMA_API void llama_kv_self_clear(
# struct llama_context * ctx),
# "Use llama_memory_clear() instead");
@ctypes_function(
"llama_kv_self_clear", [llama_context_p_ctypes], None
)
def llama_kv_self_clear(ctx: llama_context_p, /):
"""Clear the KV cache (DEPRECATED)"""
...
# // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
# // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
# // seq_id < 0 : match any sequence
# // p0 < 0 : [0, p1]
# // p1 < 0 : [p0, inf)
# DEPRECATED(LLAMA_API bool llama_kv_self_seq_rm(
# struct llama_context * ctx,
# llama_seq_id seq_id,
# llama_pos p0,
# llama_pos p1),
# "Use llama_memory_seq_rm() instead");
@ctypes_function(
"llama_kv_self_seq_rm",
[
llama_context_p_ctypes,
llama_seq_id,
llama_pos,
llama_pos,
],
ctypes.c_bool,
)
def llama_kv_self_seq_rm(
ctx: llama_context_p,
seq_id: Union[llama_seq_id, int],
p0: Union[llama_pos, int],
p1: Union[llama_pos, int],
/,
) -> bool:
"""Remove tokens from KV cache (DEPRECATED)"""
...
# // Copy all tokens that belong to the specified sequence to another sequence
# // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
# // p0 < 0 : [0, p1]
# // p1 < 0 : [p0, inf)
# DEPRECATED(LLAMA_API void llama_kv_self_seq_cp(
# struct llama_context * ctx,
# llama_seq_id seq_id_src,
# llama_seq_id seq_id_dst,
# llama_pos p0,
# llama_pos p1),
# "Use llama_memory_seq_cp() instead");
@ctypes_function(
"llama_kv_self_seq_cp",
[
llama_context_p_ctypes,
llama_seq_id,
llama_seq_id,
llama_pos,
llama_pos,
],
None,
)
def llama_kv_self_seq_cp(
ctx: llama_context_p,
seq_id_src: Union[llama_seq_id, int],
seq_id_dst: Union[llama_seq_id, int],
p0: Union[llama_pos, int],
p1: Union[llama_pos, int],
/,
):
"""Copy tokens in KV cache (DEPRECATED)"""
...
# // Removes all tokens that do not belong to the specified sequence
# DEPRECATED(LLAMA_API void llama_kv_self_seq_keep(
# struct llama_context * ctx,
# llama_seq_id seq_id),
# "Use llama_memory_seq_keep() instead");
@ctypes_function(
"llama_kv_self_seq_keep", [llama_context_p_ctypes, llama_seq_id], None
)
def llama_kv_self_seq_keep(ctx: llama_context_p, seq_id: Union[llama_seq_id, int], /):
"""Keep only specified sequence in KV cache (DEPRECATED)"""
...
# // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
# // If the KV cache is RoPEd, the KV data is updated accordingly:
# // - lazily on next llama_decode()
# // p0 < 0 : [0, p1]
# // p1 < 0 : [p0, inf)
# DEPRECATED(LLAMA_API void llama_kv_self_seq_add(
# struct llama_context * ctx,
# llama_seq_id seq_id,
# llama_pos p0,
# llama_pos p1,
# llama_pos delta),
# "Use llama_memory_seq_add() instead");
@ctypes_function(
"llama_kv_self_seq_add",
[
llama_context_p_ctypes,
llama_seq_id,
llama_pos,
llama_pos,
llama_pos,
],
None,
)
def llama_kv_self_seq_add(
ctx: llama_context_p,
seq_id: Union[llama_seq_id, int],
p0: Union[llama_pos, int],
p1: Union[llama_pos, int],
delta: Union[llama_pos, int],
/,
):
"""Add delta to sequence positions in KV cache (DEPRECATED)"""
...
# // Integer division of the positions by factor of `d > 1`
# // If the KV cache is RoPEd, the KV data is updated accordingly:
# // - lazily on next llama_decode()
# // p0 < 0 : [0, p1]
# // p1 < 0 : [p0, inf)
# DEPRECATED(LLAMA_API void llama_kv_self_seq_div(
# struct llama_context * ctx,
# llama_seq_id seq_id,
# llama_pos p0,
# llama_pos p1,
# int d),
# "Use llama_memory_seq_div() instead");
@ctypes_function(
"llama_kv_self_seq_div",
[
llama_context_p_ctypes,
llama_seq_id,
llama_pos,
llama_pos,
ctypes.c_int,
],
None,
)
def llama_kv_self_seq_div(
ctx: llama_context_p,
seq_id: Union[llama_seq_id, int],
p0: Union[llama_pos, int],
p1: Union[llama_pos, int],
d: Union[ctypes.c_int, int],
/,
):
"""Divide sequence positions in KV cache (DEPRECATED)"""
...
# // Returns the smallest position present in the KV cache for the specified sequence
# // This is typically non-zero only for SWA caches
# // Note that all positions in the range [pos_min, pos_max] are guaranteed to be present in the KV cache
# // Return -1 if the sequence is empty
# DEPRECATED(LLAMA_API llama_pos llama_kv_self_seq_pos_min(
# struct llama_context * ctx,
# llama_seq_id seq_id),
# "Use llama_memory_seq_pos_min() instead");
@ctypes_function(
"llama_kv_self_seq_pos_min", [llama_context_p_ctypes, llama_seq_id], llama_pos
)
def llama_kv_self_seq_pos_min(
ctx: llama_context_p, seq_id: Union[llama_seq_id, int], /
) -> int:
"""Returns the smallest position in KV cache for sequence (DEPRECATED)"""
...
# // Returns the largest position present in the KV cache for the specified sequence
# // Note that all positions in the range [pos_min, pos_max] are guaranteed to be present in the KV cache
# // Return -1 if the sequence is empty
# DEPRECATED(LLAMA_API llama_pos llama_kv_self_seq_pos_max(
# struct llama_context * ctx,
# llama_seq_id seq_id),
# "Use llama_memory_seq_pos_max() instead");
@ctypes_function(
"llama_kv_self_seq_pos_max", [llama_context_p_ctypes, llama_seq_id], llama_pos
)
def llama_kv_self_seq_pos_max(
ctx: llama_context_p, seq_id: Union[llama_seq_id, int], /
) -> int:
"""Returns the largest position in KV cache for sequence (DEPRECATED)"""
...
# // Defragment the KV cache
# // This will be applied:
# // - lazily on next llama_decode()
# DEPRECATED(LLAMA_API void llama_kv_self_defrag(struct llama_context * ctx),
# "simply remove this call, the context will automatically decide when to do a defragmentation based on 'defrag_thold'");
@ctypes_function("llama_kv_self_defrag", [llama_context_p_ctypes], None)
def llama_kv_self_defrag(ctx: llama_context_p, /):
"""Defragment the KV cache (DEPRECATED)"""
...
# // Check if the context supports KV cache shifting
# DEPRECATED(LLAMA_API bool llama_kv_self_can_shift(const struct llama_context * ctx),
# "use llama_memory_can_shift() instead");
@ctypes_function("llama_kv_self_can_shift", [llama_context_p_ctypes], ctypes.c_bool)
def llama_kv_self_can_shift(ctx: llama_context_p, /) -> bool:
"""Check if the context supports KV cache shifting (DEPRECATED)"""
...
# // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
# DEPRECATED(LLAMA_API void llama_kv_self_update(struct llama_context * ctx),
# "simply remove this call, updates are applied lazily on the next llama_decode()");
@ctypes_function("llama_kv_self_update", [llama_context_p_ctypes], None)
def llama_kv_self_update(ctx: llama_context_p, /):
"""Apply the KV cache updates (DEPRECATED)"""
...
# //
# // State / sessions
# //
# // Returns the *actual* size in bytes of the state
# // (logits, embedding and memory)
# // Only use when saving the state, not when restoring it, otherwise the size may be too small.
# LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
@ctypes_function("llama_state_get_size", [llama_context_p_ctypes], ctypes.c_size_t)
def llama_state_get_size(ctx: llama_context_p, /) -> int:
"""Returns the *actual* size in bytes of the state (logits, embedding and memory)"""
...
# LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
# "use llama_state_get_size instead");
@ctypes_function("llama_get_state_size", [llama_context_p_ctypes], ctypes.c_size_t)
def llama_get_state_size(ctx: llama_context_p, /) -> int:
"""Returns the size in bytes of the state (DEPRECATED)"""
...
# // Copies the state to the specified destination address.
# // Destination needs to have allocated enough memory.
# // Returns the number of bytes copied
# LLAMA_API size_t llama_state_get_data(
# struct llama_context * ctx,
# uint8_t * dst,
# size_t size);
@ctypes_function(
"llama_state_get_data",
[
llama_context_p_ctypes,
ctypes.POINTER(ctypes.c_uint8),
ctypes.c_size_t,
],
ctypes.c_size_t,
)
def llama_state_get_data(
ctx: llama_context_p,
dst: CtypesArray[ctypes.c_uint8],
size: Union[ctypes.c_size_t, int],
/,
) -> int:
"""Copies the state to the specified destination address.
Destination needs to have allocated enough memory.
Returns the number of bytes copied"""
...
# LLAMA_API DEPRECATED(size_t llama_copy_state_data(
# struct llama_context * ctx,
# uint8_t * dst),
# "use llama_state_get_data instead");
@ctypes_function(
"llama_copy_state_data",
[
llama_context_p_ctypes,
ctypes.POINTER(ctypes.c_uint8),
],
ctypes.c_size_t,
)
def llama_copy_state_data(
ctx: llama_context_p, dst: CtypesArray[ctypes.c_uint8], /
) -> int:
"""Copies the state to the specified destination address (DEPRECATED)"""
...
# // Set the state reading from the specified address
# // Returns the number of bytes read
# LLAMA_API size_t llama_state_set_data(
# struct llama_context * ctx,
# const uint8_t * src,
# size_t size);
@ctypes_function(
"llama_state_set_data",
[llama_context_p_ctypes, ctypes.POINTER(ctypes.c_uint8), ctypes.c_size_t],
ctypes.c_size_t,
)
def llama_state_set_data(
ctx: llama_context_p,
src: CtypesArray[ctypes.c_uint8],
size: Union[ctypes.c_size_t, int],
/,
) -> int:
"""Set the state reading from the specified address
Returns the number of bytes read"""
...
# LLAMA_API DEPRECATED(size_t llama_set_state_data(
# struct llama_context * ctx,
# const uint8_t * src),
# "use llama_state_set_data instead");
@ctypes_function(
"llama_set_state_data",
[llama_context_p_ctypes, ctypes.POINTER(ctypes.c_uint8)],
ctypes.c_size_t,
)
def llama_set_state_data(
ctx: llama_context_p, src: CtypesArray[ctypes.c_uint8], /
) -> int:
"""Set the state reading from the specified address (DEPRECATED)"""
...
# Save/load session file
# LLAMA_API bool llama_state_load_file(
# struct llama_context * ctx,
# const char * path_session,
# llama_token * tokens_out,
# size_t n_token_capacity,
# size_t * n_token_count_out);
@ctypes_function(
"llama_state_load_file",
[
llama_context_p_ctypes,
ctypes.c_char_p,
llama_token_p,
ctypes.c_size_t,
ctypes.POINTER(ctypes.c_size_t),
],
ctypes.c_bool,
)
def llama_state_load_file(
ctx: llama_context_p,
path_session: bytes,
tokens_out: CtypesArray[llama_token],
n_token_capacity: Union[ctypes.c_size_t, int],
n_token_count_out: CtypesPointerOrRef[ctypes.c_size_t],
/,
) -> bool:
...
# LLAMA_API DEPRECATED(bool llama_load_session_file(
# struct llama_context * ctx,
# const char * path_session,
# llama_token * tokens_out,
# size_t n_token_capacity,
# size_t * n_token_count_out),
# "use llama_state_load_file instead");
@ctypes_function(
"llama_load_session_file",
[
llama_context_p_ctypes,
ctypes.c_char_p,
llama_token_p,
ctypes.c_size_t,
ctypes.POINTER(ctypes.c_size_t),
],
ctypes.c_bool,
)
def llama_load_session_file(
ctx: llama_context_p,
path_session: bytes,
tokens_out: CtypesArray[llama_token],
n_token_capacity: Union[ctypes.c_size_t, int],
n_token_count_out: CtypesPointerOrRef[ctypes.c_size_t],
/,
) -> bool:
...
# LLAMA_API bool llama_state_save_file(
# struct llama_context * ctx,
# const char * path_session,
# const llama_token * tokens,
# size_t n_token_count);
@ctypes_function(
"llama_state_save_file",
[
llama_context_p_ctypes,
ctypes.c_char_p,
llama_token_p,
ctypes.c_size_t,
],
ctypes.c_bool,
)
def llama_state_save_file(
ctx: llama_context_p,
path_session: bytes,
tokens: CtypesArray[llama_token],
n_token_count: Union[ctypes.c_size_t, int],
/,
) -> bool:
...
# LLAMA_API DEPRECATED(bool llama_save_session_file(
# struct llama_context * ctx,
# const char * path_session,
# const llama_token * tokens,
# size_t n_token_count),
# "use llama_state_save_file instead");
@ctypes_function(
"llama_save_session_file",
[
llama_context_p_ctypes,
ctypes.c_char_p,
llama_token_p,
ctypes.c_size_t,
],
ctypes.c_bool,
)
def llama_save_session_file(
ctx: llama_context_p,
path_session: bytes,
tokens: CtypesArray[llama_token],
n_token_count: Union[ctypes.c_size_t, int],
/,
) -> bool:
...
# // Get the exact size needed to copy the state of a single sequence
# LLAMA_API size_t llama_state_seq_get_size(
# struct llama_context * ctx,
# llama_seq_id seq_id);
@ctypes_function(
"llama_state_seq_get_size",
[llama_context_p_ctypes, llama_seq_id],
ctypes.c_size_t,
)
def llama_state_seq_get_size(ctx: llama_context_p, seq_id: llama_seq_id, /) -> int:
"""Get the exact size needed to copy the state of a single sequence"""
...
# // Copy the state of a single sequence into the specified buffer
# LLAMA_API size_t llama_state_seq_get_data(
# struct llama_context * ctx,
# uint8_t * dst,
# size_t size,
# llama_seq_id seq_id);
@ctypes_function(
"llama_state_seq_get_data",
[
llama_context_p_ctypes,
ctypes.POINTER(ctypes.c_uint8),
ctypes.c_size_t,
llama_seq_id,
],
ctypes.c_size_t,
)
def llama_state_seq_get_data(
ctx: llama_context_p,
dst: CtypesArray[ctypes.c_uint8],
size: Union[ctypes.c_size_t, int],
seq_id: llama_seq_id,
/,
) -> int:
"""Copy the state of a single sequence into the specified buffer"""
...
# // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
# // Returns:
# // - Positive: Ok
# // - Zero: Failed to load
# LLAMA_API size_t llama_state_seq_set_data(
# struct llama_context * ctx,
# const uint8_t * src,
# size_t size,
# llama_seq_id dest_seq_id);
@ctypes_function(
"llama_state_seq_set_data",
[
llama_context_p_ctypes,
ctypes.POINTER(ctypes.c_uint8),
ctypes.c_size_t,
llama_seq_id,
],
ctypes.c_size_t,
)
def llama_state_seq_set_data(
ctx: llama_context_p,
src: CtypesArray[ctypes.c_uint8],
size: Union[ctypes.c_size_t, int],
dest_seq_id: llama_seq_id,
/,
) -> int:
"""Copy the sequence data into the specified sequence"""
...
# LLAMA_API size_t llama_state_seq_save_file(
# struct llama_context * ctx,
# const char * filepath,
# llama_seq_id seq_id,
# const llama_token * tokens,
# size_t n_token_count);
@ctypes_function(
"llama_state_seq_save_file",
[
llama_context_p_ctypes,
ctypes.c_char_p,
llama_seq_id,
llama_token_p,
ctypes.c_size_t,
],
ctypes.c_size_t,
)
def llama_state_seq_save_file(
ctx: llama_context_p,
filepath: bytes,
seq_id: llama_seq_id,
tokens: CtypesArray[llama_token],
n_token_count: Union[ctypes.c_size_t, int],
/,
) -> int:
...
# LLAMA_API size_t llama_state_seq_load_file(
# struct llama_context * ctx,
# const char * filepath,
# llama_seq_id dest_seq_id,
# llama_token * tokens_out,
# size_t n_token_capacity,
# size_t * n_token_count_out);
@ctypes_function(
"llama_state_seq_load_file",
[
llama_context_p_ctypes,
ctypes.c_char_p,
llama_seq_id,
llama_token_p,
ctypes.c_size_t,
ctypes.POINTER(ctypes.c_size_t),
],
ctypes.c_size_t,
)
def llama_state_seq_load_file(
ctx: llama_context_p,
filepath: bytes,
dest_seq_id: llama_seq_id,
tokens_out: CtypesArray[llama_token],
n_token_capacity: Union[ctypes.c_size_t, int],
n_token_count_out: CtypesPointerOrRef[ctypes.c_size_t],
/,
) -> int:
...
# //
# // Decoding
# //
# // Return batch for single sequence of tokens
# // The sequence ID will be fixed to 0
# // The position of the tokens will be tracked automatically by llama_decode
# //
# // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
# //
# LLAMA_API struct llama_batch llama_batch_get_one(
# llama_token * tokens,
# int32_t n_tokens);
@ctypes_function(
"llama_batch_get_one",
[
llama_token_p,
ctypes.c_int32,
],
llama_batch,
)
def llama_batch_get_one(
tokens: CtypesArray[llama_token],
n_tokens: Union[ctypes.c_int, int],
/,
) -> llama_batch:
"""Return batch for single sequence of tokens
NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
"""
...
# // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
# // Each token can be assigned up to n_seq_max sequence ids
# // The batch has to be freed with llama_batch_free()
# // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
# // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
# // The rest of the llama_batch members are allocated with size n_tokens
# // All members are left uninitialized
# LLAMA_API struct llama_batch llama_batch_init(
# int32_t n_tokens,
# int32_t embd,
# int32_t n_seq_max);
@ctypes_function(
"llama_batch_init", [ctypes.c_int32, ctypes.c_int32, ctypes.c_int32], llama_batch
)
def llama_batch_init(
n_tokens: Union[ctypes.c_int32, int],
embd: Union[ctypes.c_int32, int],
n_seq_max: Union[ctypes.c_int32, int],
/,
) -> llama_batch:
"""Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
Each token can be assigned up to n_seq_max sequence ids
The batch has to be freed with llama_batch_free()
If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
The rest of the llama_batch members are allocated with size n_tokens
All members are left uninitialized"""
...
# // Frees a batch of tokens allocated with llama_batch_init()
# LLAMA_API void llama_batch_free(struct llama_batch batch);
@ctypes_function("llama_batch_free", [llama_batch], None)
def llama_batch_free(batch: llama_batch, /):
"""Frees a batch of tokens allocated with llama_batch_init()"""
...
# // Process a batch of tokens.
# // In contrast to llama_decode() - this call does not use KV cache.
# // For encode-decoder contexts, processes the batch using the encoder.
# // Can store the encoder output internally for later use by the decoder's cross-attention layers.
# // 0 - success
# // < 0 - error. the memory state is restored to the state before this call
# LLAMA_API int32_t llama_encode(
# struct llama_context * ctx,
# struct llama_batch batch);
@ctypes_function("llama_encode", [llama_context_p_ctypes, llama_batch], ctypes.c_int32)
def llama_encode(ctx: llama_context_p, batch: llama_batch, /) -> int:
"""Process a batch of tokens using the encoder.
0 - success
< 0 - error"""
...
# // Process a batch of tokens.
# // Requires the context to have a memory.
# // For encode-decoder contexts, processes the batch using the decoder.
# // Positive return values does not mean a fatal error, but rather a warning.
# // Upon fatal-error or abort, the ubatches that managed to be been processed will remain in the memory state of the context
# // To handle this correctly, query the memory state using llama_memory_seq_pos_min() and llama_memory_seq_pos_max()
# // Upon other return values, the memory state is restored to the state before this call
# // 0 - success
# // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
# // 2 - aborted (processed ubatches will remain in the context's memory)
# // -1 - invalid input batch
# // < -1 - fatal error (processed ubatches will remain in the context's memory)
# LLAMA_API int32_t llama_decode(
# struct llama_context * ctx,
# struct llama_batch batch);
@ctypes_function("llama_decode", [llama_context_p_ctypes, llama_batch], ctypes.c_int32)
def llama_decode(ctx: llama_context_p, batch: llama_batch, /) -> int:
"""Process a batch of tokens.
0 - success
1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
2 - aborted (processed ubatches will remain in the context's memory)
-1 - invalid input batch
< -1 - fatal error (processed ubatches will remain in the context's memory)"""
...
# // Set the number of threads used for decoding
# // n_threads is the number of threads used for generation (single token)
# // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
# LLAMA_API void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch);
@ctypes_function(
"llama_set_n_threads",
[
llama_context_p_ctypes,
ctypes.c_int32,
ctypes.c_int32,
],
None,
)
def llama_set_n_threads(
ctx: llama_context_p,
n_threads: Union[ctypes.c_int32, int],
n_threads_batch: Union[ctypes.c_int32, int],
/,
):
"""Set the number of threads used for decoding
n_threads is the number of threads used for generation (single token)
n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
"""
...
# // Get the number of threads used for generation of a single token.
# LLAMA_API int32_t llama_n_threads(struct llama_context * ctx);
@ctypes_function("llama_n_threads", [llama_context_p_ctypes], ctypes.c_int32)
def llama_n_threads(ctx: llama_context_p, /) -> int:
"""Get the number of threads used for generation of a single token"""
...
# // Get the number of threads used for prompt and batch processing (multiple token).
# LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx);
@ctypes_function("llama_n_threads_batch", [llama_context_p_ctypes], ctypes.c_int32)
def llama_n_threads_batch(ctx: llama_context_p, /) -> int:
"""Get the number of threads used for prompt and batch processing (multiple token)"""
...
# // Set whether the context outputs embeddings or not
# // TODO: rename to avoid confusion with llama_get_embeddings()
# LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
@ctypes_function("llama_set_embeddings", [llama_context_p_ctypes, ctypes.c_bool], None)
def llama_set_embeddings(ctx: llama_context_p, embeddings: bool, /):
"""Set whether the context outputs embeddings or not"""
...
# // Set whether to use causal attention or not
# // If set to true, the model will only attend to the past tokens
# LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
@ctypes_function("llama_set_causal_attn", [llama_context_p_ctypes, ctypes.c_bool], None)
def llama_set_causal_attn(ctx: llama_context_p, causal_attn: bool, /):
"""Set whether to use causal attention or not
If set to true, the model will only attend to the past tokens"""
...
# // Set whether the model is in warmup mode or not
# // If true, all model tensors are activated during llama_decode() to load and cache their weights.
# LLAMA_API void llama_set_warmup(struct llama_context * ctx, bool warmup);
@ctypes_function("llama_set_warmup", [llama_context_p_ctypes, ctypes.c_bool], None)
def llama_set_warmup(ctx: llama_context_p, warmup: bool, /):
"""Set whether the model is in warmup mode or not
If true, all model tensors are activated during llama_decode() to load and cache their weights."""
...
# // Set abort callback
# LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
@ctypes_function(
"llama_set_abort_callback",
[llama_context_p_ctypes, ggml_abort_callback, ctypes.c_void_p],
None,
)
def llama_set_abort_callback(
ctx: llama_context_p,
abort_callback: Callable[[ctypes.c_void_p], None],
abort_callback_data: ctypes.c_void_p,
/,
):
"""Set abort callback"""
...
# // Wait until all computations are finished
# // This is automatically done when using one of the functions below to obtain the computation results
# // and is not necessary to call it explicitly in most cases
# LLAMA_API void llama_synchronize(struct llama_context * ctx);
@ctypes_function("llama_synchronize", [llama_context_p_ctypes], None)
def llama_synchronize(ctx: llama_context_p, /):
"""Wait until all computations are finished
This is automatically done when using one of the functions below to obtain the computation results
and is not necessary to call it explicitly in most cases"""
...
# // Token logits obtained from the last call to llama_decode()
# // The logits for which llama_batch.logits[i] != 0 are stored contiguously
# // in the order they have appeared in the batch.
# // Rows: number of tokens for which llama_batch.logits[i] != 0
# // Cols: n_vocab
# LLAMA_API float * llama_get_logits(struct llama_context * ctx);
@ctypes_function(
"llama_get_logits", [llama_context_p_ctypes], ctypes.POINTER(ctypes.c_float)
)
def llama_get_logits(ctx: llama_context_p, /) -> CtypesArray[ctypes.c_float]:
"""Token logits obtained from the last call to llama_decode()
The logits for which llama_batch.logits[i] != 0 are stored contiguously
in the order they have appeared in the batch.
Rows: number of tokens for which llama_batch.logits[i] != 0
Cols: n_vocab
Returns:
Pointer to the logits buffer of shape (n_tokens, n_vocab)"""
...
# // Logits for the ith token. For positive indices, Equivalent to:
# // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
# // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
# // returns NULL for invalid ids.
# LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
@ctypes_function(
"llama_get_logits_ith",
[llama_context_p_ctypes, ctypes.c_int32],
ctypes.POINTER(ctypes.c_float),
)
def llama_get_logits_ith(
ctx: llama_context_p, i: Union[ctypes.c_int32, int], /
) -> CtypesArray[ctypes.c_float]:
"""Logits for the ith token. Equivalent to:
llama_get_logits(ctx) + i*n_vocab"""
...
# // Get all output token embeddings.
# // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
# // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
# // in the order they have appeared in the batch.
# // shape: [n_outputs*n_embd]
# // Otherwise, returns NULL.
# LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
@ctypes_function(
"llama_get_embeddings", [llama_context_p_ctypes], ctypes.POINTER(ctypes.c_float)
)
def llama_get_embeddings(ctx: llama_context_p, /) -> CtypesArray[ctypes.c_float]:
"""Get the embeddings for the input
shape: [n_embd] (1-dimensional)"""
...
# // Get the embeddings for the ith token. For positive indices, Equivalent to:
# // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
# // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
# // shape: [n_embd] (1-dimensional)
# // returns NULL for invalid ids.
# LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
@ctypes_function(
"llama_get_embeddings_ith",
[llama_context_p_ctypes, ctypes.c_int32],
ctypes.POINTER(ctypes.c_float),
)
def llama_get_embeddings_ith(
ctx: llama_context_p, i: Union[ctypes.c_int32, int], /
) -> CtypesArray[ctypes.c_float]:
"""Get the embeddings for the ith sequence
llama_get_embeddings(ctx) + i*n_embd"""
...
# // Get the embeddings for a sequence id
# // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
# // when pooling_type == LLAMA_POOLING_TYPE_RANK, returns float[n_cls_out] with the rank(s) of the sequence
# // otherwise: float[n_embd] (1-dimensional)
# LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
@ctypes_function(
"llama_get_embeddings_seq",
[llama_context_p_ctypes, llama_seq_id],
ctypes.POINTER(ctypes.c_float),
)
def llama_get_embeddings_seq(
ctx: llama_context_p, seq_id: Union[llama_seq_id, int], /
) -> CtypesArray[ctypes.c_float]:
"""Get the embeddings for a sequence id
Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
shape: [n_embd] (1-dimensional)"""
...
# //
# // Vocab
# //
# LLAMA_API const char * llama_vocab_get_text(const struct llama_vocab * vocab, llama_token token);
@ctypes_function(
"llama_vocab_get_text", [llama_vocab_p_ctypes, llama_token], ctypes.c_char_p
)
def llama_vocab_get_text(
vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> bytes:
...
# LLAMA_API float llama_vocab_get_score(const struct llama_vocab * vocab, llama_token token);
@ctypes_function(
"llama_vocab_get_score", [llama_vocab_p_ctypes, llama_token], ctypes.c_float
)
def llama_vocab_get_score(
vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> float:
...
# LLAMA_API enum llama_token_attr llama_vocab_get_attr(const struct llama_vocab * vocab, llama_token token);
@ctypes_function(
"llama_vocab_get_attr", [llama_vocab_p_ctypes, llama_token], ctypes.c_int
)
def llama_vocab_get_attr(
vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> int:
...
# // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
# LLAMA_API bool llama_vocab_is_eog(const struct llama_vocab * vocab, llama_token token);
@ctypes_function(
"llama_vocab_is_eog", [llama_vocab_p_ctypes, llama_token], ctypes.c_bool
)
def llama_vocab_is_eog(vocab: llama_vocab_p, token: Union[llama_token, int], /) -> bool:
"""Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)"""
...
# // Identify if Token Id is a control token or a render-able token
# LLAMA_API bool llama_vocab_is_control(const struct llama_vocab * vocab, llama_token token);
@ctypes_function(
"llama_vocab_is_control", [llama_vocab_p_ctypes, llama_token], ctypes.c_bool
)
def llama_vocab_is_control(
vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> bool:
"""Identify if Token Id is a control token or a render-able token"""
...
# // Special tokens
# LLAMA_API llama_token llama_vocab_bos(const struct llama_vocab * vocab); // beginning-of-sentence
@ctypes_function("llama_vocab_bos", [llama_vocab_p_ctypes], llama_token)
def llama_vocab_bos(vocab: llama_vocab_p, /) -> llama_token:
"""beginning-of-sentence"""
...
# LLAMA_API llama_token llama_vocab_eos(const struct llama_vocab * vocab); // end-of-sentence
@ctypes_function("llama_vocab_eos", [llama_vocab_p_ctypes], llama_token)
def llama_vocab_eos(vocab: llama_vocab_p, /) -> llama_token:
"""end-of-sentence"""
...
# LLAMA_API llama_token llama_vocab_eot(const struct llama_vocab * vocab); // end-of-turn
@ctypes_function("llama_vocab_eot", [llama_vocab_p_ctypes], llama_token)
def llama_vocab_eot(vocab: llama_vocab_p, /) -> llama_token:
"""end-of-turn"""
...
# LLAMA_API llama_token llama_vocab_sep(const struct llama_vocab * vocab); // sentence separator
@ctypes_function("llama_vocab_sep", [llama_vocab_p_ctypes], llama_token)
def llama_vocab_sep(vocab: llama_vocab_p, /) -> llama_token:
"""sentence separator"""
...
# LLAMA_API llama_token llama_vocab_nl (const struct llama_vocab * vocab); // next-line
@ctypes_function("llama_vocab_nl", [llama_vocab_p_ctypes], llama_token)
def llama_vocab_nl(vocab: llama_vocab_p, /) -> llama_token:
"""next-line"""
...
# LLAMA_API llama_token llama_vocab_pad(const struct llama_vocab * vocab); // padding
@ctypes_function("llama_vocab_pad", [llama_vocab_p_ctypes], llama_token)
def llama_vocab_pad(vocab: llama_vocab_p, /) -> llama_token:
"""padding"""
...
# LLAMA_API bool llama_vocab_get_add_bos(const struct llama_vocab * vocab);
@ctypes_function(
"llama_vocab_get_add_bos",
[llama_vocab_p_ctypes],
ctypes.c_bool,
)
def llama_vocab_get_add_bos(vocab: llama_vocab_p, /) -> bool:
...
# LLAMA_API bool llama_vocab_get_add_eos(const struct llama_vocab * vocab);
@ctypes_function(
"llama_vocab_get_add_eos",
[llama_vocab_p_ctypes],
ctypes.c_bool,
)
def llama_vocab_get_add_eos(vocab: llama_vocab_p, /) -> bool:
...
# LLAMA_API bool llama_vocab_get_add_sep(const struct llama_vocab * vocab);
@ctypes_function(
"llama_vocab_get_add_sep",
[llama_vocab_p_ctypes],
ctypes.c_bool,
)
def llama_vocab_get_add_sep(vocab: llama_vocab_p, /) -> bool:
...
# LLAMA_API llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab);
@ctypes_function(
"llama_vocab_fim_pre",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_vocab_fim_pre(vocab: llama_vocab_p, /) -> llama_token:
...
# LLAMA_API llama_token llama_vocab_fim_suf(const struct llama_vocab * vocab);
@ctypes_function(
"llama_vocab_fim_suf",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_vocab_fim_suf(vocab: llama_vocab_p, /) -> llama_token:
...
# LLAMA_API llama_token llama_vocab_fim_mid(const struct llama_vocab * vocab);
@ctypes_function(
"llama_vocab_fim_mid",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_vocab_fim_mid(vocab: llama_vocab_p, /) -> llama_token:
...
# LLAMA_API llama_token llama_vocab_fim_pad(const struct llama_vocab * vocab);
@ctypes_function(
"llama_vocab_fim_pad",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_vocab_fim_pad(vocab: llama_vocab_p, /) -> llama_token:
...
# LLAMA_API llama_token llama_vocab_fim_rep(const struct llama_vocab * vocab);
@ctypes_function(
"llama_vocab_fim_rep",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_vocab_fim_rep(vocab: llama_vocab_p, /) -> llama_token:
...
# LLAMA_API llama_token llama_vocab_fim_sep(const struct llama_vocab * vocab);
@ctypes_function(
"llama_vocab_fim_sep",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_vocab_fim_sep(vocab: llama_vocab_p, /) -> llama_token:
...
# DEPRECATED functions
# DEPRECATED(LLAMA_API const char * llama_token_get_text(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_text instead");
@ctypes_function(
"llama_token_get_text",
[llama_vocab_p_ctypes, llama_token],
ctypes.c_char_p,
)
def llama_token_get_text(
vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> bytes:
...
# DEPRECATED(LLAMA_API float llama_token_get_score(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_score instead");
@ctypes_function(
"llama_token_get_score",
[llama_vocab_p_ctypes, llama_token],
ctypes.c_float,
)
def llama_token_get_score(
vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> float:
...
# DEPRECATED(LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_attr instead");
@ctypes_function(
"llama_token_get_attr",
[llama_vocab_p_ctypes, llama_token],
ctypes.c_int,
)
def llama_token_get_attr(
vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> int:
...
# DEPRECATED(LLAMA_API bool llama_token_is_eog(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_is_eog instead");
@ctypes_function(
"llama_token_is_eog",
[llama_vocab_p_ctypes, llama_token],
ctypes.c_bool,
)
def llama_token_is_eog(
vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> bool:
...
# DEPRECATED(LLAMA_API bool llama_token_is_control(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_is_control instead");
@ctypes_function(
"llama_token_is_control",
[llama_vocab_p_ctypes, llama_token],
ctypes.c_bool,
)
def llama_token_is_control(
vocab: llama_vocab_p, token: Union[llama_token, int], /
) -> bool:
...
# DEPRECATED(LLAMA_API llama_token llama_token_bos(const struct llama_vocab * vocab), "use llama_vocab_bos instead");
@ctypes_function(
"llama_token_bos",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_token_bos(vocab: llama_vocab_p, /) -> int:
...
# DEPRECATED(LLAMA_API llama_token llama_token_eos(const struct llama_vocab * vocab), "use llama_vocab_eos instead");
@ctypes_function(
"llama_token_eos",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_token_eos(vocab: llama_vocab_p, /) -> int:
...
# DEPRECATED(LLAMA_API llama_token llama_token_eot(const struct llama_vocab * vocab), "use llama_vocab_eot instead");
@ctypes_function(
"llama_token_eot",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_token_eot(vocab: llama_vocab_p, /) -> int:
...
# DEPRECATED(LLAMA_API llama_token llama_token_cls(const struct llama_vocab * vocab), "use llama_vocab_cls instead");
@ctypes_function(
"llama_token_cls",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_token_cls(vocab: llama_vocab_p, /) -> int:
...
# DEPRECATED(LLAMA_API llama_token llama_token_sep(const struct llama_vocab * vocab), "use llama_vocab_sep instead");
@ctypes_function(
"llama_token_sep",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_token_sep(vocab: llama_vocab_p, /) -> int:
...
# DEPRECATED(LLAMA_API llama_token llama_token_nl (const struct llama_vocab * vocab), "use llama_vocab_nl instead");
@ctypes_function(
"llama_token_nl",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_token_nl(vocab: llama_vocab_p, /) -> int:
...
# DEPRECATED(LLAMA_API llama_token llama_token_pad(const struct llama_vocab * vocab), "use llama_vocab_pad instead");
@ctypes_function(
"llama_token_pad",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_token_pad(vocab: llama_vocab_p, /) -> int:
...
# DEPRECATED(LLAMA_API bool llama_add_bos_token(const struct llama_vocab * vocab), "use llama_vocab_get_add_bos instead");
@ctypes_function(
"llama_add_bos_token",
[llama_vocab_p_ctypes],
ctypes.c_bool,
)
def llama_add_bos_token(vocab: llama_vocab_p, /) -> bool:
...
# DEPRECATED(LLAMA_API bool llama_add_eos_token(const struct llama_vocab * vocab), "use llama_vocab_get_add_eos instead");
@ctypes_function(
"llama_add_eos_token",
[llama_vocab_p_ctypes],
ctypes.c_bool,
)
def llama_add_eos_token(vocab: llama_vocab_p, /) -> bool:
...
# DEPRECATED(LLAMA_API llama_token llama_token_fim_pre(const struct llama_vocab * vocab), "use llama_vocab_fim_pre instead");
@ctypes_function(
"llama_token_fim_pre",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_token_fim_pre(vocab: llama_vocab_p, /) -> llama_token:
...
# DEPRECATED(LLAMA_API llama_token llama_token_fim_suf(const struct llama_vocab * vocab), "use llama_vocab_fim_suf instead");
@ctypes_function(
"llama_token_fim_suf",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_token_fim_suf(vocab: llama_vocab_p, /) -> llama_token:
...
# DEPRECATED(LLAMA_API llama_token llama_token_fim_mid(const struct llama_vocab * vocab), "use llama_vocab_fim_mid instead");
@ctypes_function(
"llama_token_fim_mid",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_token_fim_mid(vocab: llama_vocab_p, /) -> llama_token:
...
# DEPRECATED(LLAMA_API llama_token llama_token_fim_pad(const struct llama_vocab * vocab), "use llama_vocab_fim_pad instead");
@ctypes_function(
"llama_token_fim_pad",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_token_fim_pad(vocab: llama_vocab_p, /) -> llama_token:
...
# DEPRECATED(LLAMA_API llama_token llama_token_fim_rep(const struct llama_vocab * vocab), "use llama_vocab_fim_rep instead");
@ctypes_function(
"llama_token_fim_rep",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_token_fim_rep(vocab: llama_vocab_p, /) -> llama_token:
...
# DEPRECATED(LLAMA_API llama_token llama_token_fim_sep(const struct llama_vocab * vocab), "use llama_vocab_fim_sep instead");
@ctypes_function(
"llama_token_fim_sep",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_token_fim_sep(vocab: llama_vocab_p, /) -> llama_token:
...
# // CLS is equivalent to BOS
# DEPRECATED(LLAMA_API llama_token llama_vocab_cls(const struct llama_vocab * vocab), // classification
# "use llama_vocab_bos instead");
@ctypes_function(
"llama_vocab_cls",
[llama_vocab_p_ctypes],
llama_token,
)
def llama_vocab_cls(vocab: llama_vocab_p, /) -> llama_token:
...
# //
# // Tokenization
# //
# // The API is thread-safe.
# //
# /// @details Convert the provided text into tokens.
# /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
# /// @return Returns the number of tokens on success, no more than n_tokens_max
# /// @return Returns a negative number on failure - the number of tokens that would have been returned
# /// @return Returns INT32_MIN on overflow (e.g., tokenization result size exceeds int32_t limit)
# /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
# /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
# /// as plaintext. Does not insert a leading space.
# LLAMA_API int32_t llama_tokenize(
# const struct llama_vocab * vocab,
# const char * text,
# int32_t text_len,
# llama_token * tokens,
# int32_t n_tokens_max,
# bool add_special,
# bool parse_special);
@ctypes_function(
"llama_tokenize",
[
llama_vocab_p_ctypes,
ctypes.c_char_p,
ctypes.c_int32,
llama_token_p,
ctypes.c_int32,
ctypes.c_bool,
ctypes.c_bool,
],
ctypes.c_int32,
)
def llama_tokenize(
vocab: llama_vocab_p,
text: bytes,
text_len: Union[ctypes.c_int, int],
tokens: CtypesArray[llama_token],
n_tokens_max: Union[ctypes.c_int, int],
add_special: Union[ctypes.c_bool, bool],
parse_special: Union[ctypes.c_bool, bool],
/,
) -> int:
"""Convert the provided text into tokens.
Args:
vocab: The vocabulary to use for tokenization.
text: The text to tokenize.
text_len: The length of the text.
tokens: The tokens pointer must be large enough to hold the resulting tokens.
n_max_tokens: The maximum number of tokens to return.
add_special: Allow adding special tokens if the model is configured to do so.
parse_special: Allow parsing special tokens.
Returns:
Returns the number of tokens on success, no more than n_tokens_max
Returns a negative number on failure - the number of tokens that would have been returned
"""
...
# // Token Id -> Piece.
# // Uses the vocabulary in the provided context.
# // Does not write null terminator to the buffer.
# // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
# // @param special If true, special tokens are rendered in the output.
# LLAMA_API int32_t llama_token_to_piece(
# const struct llama_vocab * vocab,
# llama_token token,
# char * buf,
# int32_t length,
# int32_t lstrip,
# bool special);
@ctypes_function(
"llama_token_to_piece",
[
llama_vocab_p_ctypes,
llama_token,
ctypes.c_char_p,
ctypes.c_int32,
ctypes.c_int32,
ctypes.c_bool,
],
ctypes.c_int32,
)
def llama_token_to_piece(
vocab: llama_vocab_p,
token: Union[llama_token, int],
buf: Union[ctypes.c_char_p, bytes, CtypesArray[ctypes.c_char]],
length: Union[ctypes.c_int, int],
lstrip: Union[ctypes.c_int, int],
special: Union[ctypes.c_bool, bool],
/,
) -> int:
"""Token Id -> Piece.
Uses the vocabulary in the provided context.
Does not write null terminator to the buffer.
User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
Args:
vocab: The vocabulary to use for tokenization.
token: The token to convert.
buf: The buffer to write the token to.
length: The length of the buffer.
lstrip: The number of leading spaces to skip.
special: If true, special tokens are rendered in the output."""
...
# /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
# /// @param text The char pointer must be large enough to hold the resulting text.
# /// @return Returns the number of chars/bytes on success, no more than text_len_max.
# /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
# /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
# /// @param unparse_special If true, special tokens are rendered in the output.
# LLAMA_API int32_t llama_detokenize(
# const struct llama_vocab * vocab,
# const llama_token * tokens,
# int32_t n_tokens,
# char * text,
# int32_t text_len_max,
# bool remove_special,
# bool unparse_special);
@ctypes_function(
"llama_detokenize",
[
llama_vocab_p_ctypes,
ctypes.POINTER(llama_token),
ctypes.c_int32,
ctypes.c_char_p,
ctypes.c_int32,
ctypes.c_bool,
ctypes.c_bool,
],
ctypes.c_int32,
)
def llama_detokenize(
vocab: llama_vocab_p,
tokens: CtypesArray[llama_token],
n_tokens: Union[ctypes.c_int, int],
text: bytes,
text_len_max: Union[ctypes.c_int, int],
remove_special: Union[ctypes.c_bool, bool],
unparse_special: Union[ctypes.c_bool, bool],
/,
) -> int:
"""Convert the provided tokens into text (inverse of llama_tokenize()).
Args:
vocab: The vocabulary to use for tokenization.
tokens: The tokens to convert.
n_tokens: The number of tokens.
text: The buffer to write the text to.
text_len_max: The length of the buffer.
remove_special: Allow to remove BOS and EOS tokens if model is configured to do so.
unparse_special: If true, special tokens are rendered in the output."""
...
# //
# // Chat templates
# //
# /// Apply chat template. Inspired by hf apply_chat_template() on python.
# /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
# /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggml-org/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
# /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model's default chat template will be used instead.
# /// @param chat Pointer to a list of multiple llama_chat_message
# /// @param n_msg Number of llama_chat_message in this chat
# /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
# /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
# /// @param length The size of the allocated buffer
# /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
# LLAMA_API int32_t llama_chat_apply_template(
# const char * tmpl,
# const struct llama_chat_message * chat,
# size_t n_msg,
# bool add_ass,
# char * buf,
# int32_t length);
@ctypes_function(
"llama_chat_apply_template",
[
ctypes.c_char_p, # tmpl
ctypes.POINTER(llama_chat_message), # chat
ctypes.c_size_t, # n_msg
ctypes.c_bool, # add_ass (added)
ctypes.c_char_p, # buf
ctypes.c_int32, # length
],
ctypes.c_int32,
)
def llama_chat_apply_template(
tmpl: bytes,
chat: CtypesArray[llama_chat_message],
n_msg: int,
add_ass: bool, # Added parameter
buf: bytes,
length: int,
/,
) -> int:
"""Apply chat template.
Args:
tmpl: Template to use. If None, uses model's default
chat: Array of chat messages
n_msg: Number of messages
add_ass: Whether to end prompt with assistant token
buf: Output buffer
length: Buffer length
Returns:
Number of bytes written, or needed if buffer too small
"""
...
# // Get list of built-in chat templates
# LLAMA_API int32_t llama_chat_builtin_templates(const char ** output, size_t len);
@ctypes_function(
"llama_chat_builtin_templates",
[
ctypes.POINTER(ctypes.c_char_p),
ctypes.c_size_t,
],
ctypes.c_int32,
)
def llama_chat_builtin_templates(
output: CtypesArray[bytes],
len: Union[ctypes.c_size_t, int],
/,
) -> int:
"""Get list of built-in chat templates.
Args:
output: Output buffer to store template names.
len: Length of the output buffer.
Returns:
Number of templates available.
Returns a negative number on error.
"""
...
# //
# // Sampling API
# //
# typedef void * llama_sampler_context_t;
llama_sampler_context_t = ctypes.c_void_p
# // user code can implement the interface below in order to create custom llama_sampler
# struct llama_sampler_i {
# const char * (*name) (const struct llama_sampler * smpl); // can be NULL
# void (*accept)( struct llama_sampler * smpl, llama_token token); // can be NULL
# void (*apply) ( struct llama_sampler * smpl, llama_token_data_array * cur_p); // required
# void (*reset) ( struct llama_sampler * smpl); // can be NULL
# struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
# void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
# // TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
# //void (*apply_ggml) (struct llama_sampler * smpl, ...);
# };
class llama_sampler_i(ctypes.Structure):
...
# struct llama_sampler {
# const struct llama_sampler_i * iface;
# llama_sampler_context_t ctx;
# };
class llama_sampler(ctypes.Structure):
_fields_ = [
("iface", ctypes.POINTER(llama_sampler_i)),
("ctx", llama_sampler_context_t),
]
if TYPE_CHECKING:
llama_sampler_p = CtypesPointer[llama_sampler]
llama_sampler_p_ctypes = ctypes.POINTER(llama_sampler)
llama_sampler_i_name = ctypes.CFUNCTYPE(ctypes.c_char_p, llama_sampler_p_ctypes)
llama_sampler_i_accept = ctypes.CFUNCTYPE(None, llama_sampler_p_ctypes, llama_token)
llama_sampler_i_apply = ctypes.CFUNCTYPE(
None, llama_sampler_p_ctypes, llama_token_data_array_p
)
llama_sampler_i_reset = ctypes.CFUNCTYPE(None, llama_sampler_p_ctypes)
llama_sampler_i_clone = ctypes.CFUNCTYPE(llama_sampler_p_ctypes, llama_sampler_p_ctypes)
llama_sampler_i_free = ctypes.CFUNCTYPE(None, llama_sampler_p_ctypes)
llama_sampler_i._fields_ = [
("name", llama_sampler_i_name),
("accept", llama_sampler_i_accept),
("apply", llama_sampler_i_apply),
("reset", llama_sampler_i_reset),
("clone", llama_sampler_i_clone),
("free", llama_sampler_i_free),
]
# // mirror of llama_sampler_i:
# LLAMA_API struct llama_sampler * llama_sampler_init (const struct llama_sampler_i * iface, llama_sampler_context_t ctx);
@ctypes_function(
"llama_sampler_init",
[ctypes.POINTER(llama_sampler_i), llama_sampler_context_t],
llama_sampler_p_ctypes,
)
def llama_sampler_init(
iface: ctypes.POINTER(llama_sampler_i), ctx: llama_sampler_context_t, /
) -> llama_sampler_p:
...
# LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
@ctypes_function(
"llama_sampler_name",
[llama_sampler_p_ctypes],
ctypes.c_char_p,
)
def llama_sampler_name(smpl: llama_sampler_p, /) -> bytes:
...
# LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
@ctypes_function(
"llama_sampler_accept",
[llama_sampler_p_ctypes, llama_token],
None,
)
def llama_sampler_accept(smpl: llama_sampler_p, token: Union[llama_token, int], /):
...
# LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
@ctypes_function(
"llama_sampler_apply",
[llama_sampler_p_ctypes, llama_token_data_array_p],
None,
)
def llama_sampler_apply(
smpl: llama_sampler_p, cur_p: CtypesArray[llama_token_data_array], /
):
...
# LLAMA_API void llama_sampler_reset ( struct llama_sampler * smpl);
@ctypes_function(
"llama_sampler_reset",
[llama_sampler_p_ctypes],
None,
)
def llama_sampler_reset(smpl: llama_sampler_p, /):
...
# LLAMA_API struct llama_sampler * llama_sampler_clone (const struct llama_sampler * smpl);
@ctypes_function(
"llama_sampler_clone",
[llama_sampler_p_ctypes],
llama_sampler_p_ctypes,
)
def llama_sampler_clone(smpl: llama_sampler_p, /) -> llama_sampler_p:
...
# // important: do not free if the sampler has been added to a llama_sampler_chain (via llama_sampler_chain_add)
# LLAMA_API void llama_sampler_free ( struct llama_sampler * smpl);
@ctypes_function(
"llama_sampler_free",
[llama_sampler_p_ctypes],
None,
)
def llama_sampler_free(smpl: llama_sampler_p, /):
...
# // llama_sampler_chain
# // a type of llama_sampler that can chain multiple samplers one after another
# LLAMA_API struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params);
@ctypes_function(
"llama_sampler_chain_init",
[llama_sampler_chain_params],
llama_sampler_p_ctypes,
)
def llama_sampler_chain_init(params: llama_sampler_chain_params, /) -> llama_sampler_p:
...
# // important: takes ownership of the sampler object and will free it when llama_sampler_free is called
# LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
@ctypes_function(
"llama_sampler_chain_add",
[llama_sampler_p_ctypes, llama_sampler_p_ctypes],
None,
)
def llama_sampler_chain_add(chain: llama_sampler_p, smpl: llama_sampler_p, /):
...
# LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
@ctypes_function(
"llama_sampler_chain_get",
[llama_sampler_p_ctypes, ctypes.c_int32],
llama_sampler_p_ctypes,
)
def llama_sampler_chain_get(
chain: llama_sampler_p, i: Union[ctypes.c_int32, int], /
) -> llama_sampler_p:
...
# LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
@ctypes_function(
"llama_sampler_chain_n",
[llama_sampler_p_ctypes],
ctypes.c_int,
)
def llama_sampler_chain_n(chain: llama_sampler_p, /) -> int:
...
# // after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
# LLAMA_API struct llama_sampler * llama_sampler_chain_remove( struct llama_sampler * chain, int32_t i);
@ctypes_function(
"llama_sampler_chain_remove",
[llama_sampler_p_ctypes, ctypes.c_int32],
llama_sampler_p_ctypes,
)
def llama_sampler_chain_remove(
chain: llama_sampler_p, i: Union[ctypes.c_int32, int], /
) -> llama_sampler_p:
...
# // available samplers:
# LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void);
@ctypes_function("llama_sampler_init_greedy", [], llama_sampler_p_ctypes)
def llama_sampler_init_greedy() -> llama_sampler_p:
...
# LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
@ctypes_function("llama_sampler_init_dist", [ctypes.c_uint32], llama_sampler_p_ctypes)
def llama_sampler_init_dist(seed: int) -> llama_sampler_p:
...
# /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
# /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
# DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void),
# "will be removed in the future (see https://github.com/ggml-org/llama.cpp/pull/9896#discussion_r1800920915)");
@ctypes_function("llama_sampler_init_softmax", [], llama_sampler_p_ctypes)
def llama_sampler_init_softmax() -> llama_sampler_p:
...
# /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
# /// Setting k <= 0 makes this a noop
# LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
@ctypes_function("llama_sampler_init_top_k", [ctypes.c_int32], llama_sampler_p_ctypes)
def llama_sampler_init_top_k(k: int) -> llama_sampler_p:
...
# /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
# LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep);
@ctypes_function(
"llama_sampler_init_top_p",
[ctypes.c_float, ctypes.c_size_t],
llama_sampler_p_ctypes,
)
def llama_sampler_init_top_p(p: float, min_keep: int) -> llama_sampler_p:
...
# /// @details Minimum P sampling as described in https://github.com/ggml-org/llama.cpp/pull/3841
# LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
@ctypes_function(
"llama_sampler_init_min_p",
[ctypes.c_float, ctypes.c_size_t],
llama_sampler_p_ctypes,
)
def llama_sampler_init_min_p(p: float, min_keep: int) -> llama_sampler_p:
...
# /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
# LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);
@ctypes_function(
"llama_sampler_init_typical",
[ctypes.c_float, ctypes.c_size_t],
llama_sampler_p_ctypes,
)
def llama_sampler_init_typical(p: float, min_keep: int) -> llama_sampler_p:
...
# /// #details Updates the logits l_i` = l_i/t. When t <= 0.0f, the maximum logit is kept at it's original value, the rest are set to -inf
# LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t);
@ctypes_function("llama_sampler_init_temp", [ctypes.c_float], llama_sampler_p_ctypes)
def llama_sampler_init_temp(t: float) -> llama_sampler_p:
...
# /// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
# LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent);
@ctypes_function(
"llama_sampler_init_temp_ext",
[ctypes.c_float, ctypes.c_float, ctypes.c_float],
llama_sampler_p_ctypes,
)
def llama_sampler_init_temp_ext(
t: float, delta: float, exponent: float
) -> llama_sampler_p:
...
# /// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
# LLAMA_API struct llama_sampler * llama_sampler_init_xtc (float p, float t, size_t min_keep, uint32_t seed);
@ctypes_function(
"llama_sampler_init_xtc",
[ctypes.c_float, ctypes.c_float, ctypes.c_size_t, ctypes.c_uint32],
llama_sampler_p_ctypes,
)
def llama_sampler_init_xtc(
p: float, t: float, min_keep: int, seed: int, /
) -> llama_sampler_p:
...
# /// @details Top n sigma sampling as described in academic paper "Top-nσ: Not All Logits Are You Need" https://arxiv.org/pdf/2411.07641
# LLAMA_API struct llama_sampler * llama_sampler_init_top_n_sigma(float n);
@ctypes_function(
"llama_sampler_init_top_n_sigma",
[ctypes.c_float],
llama_sampler_p_ctypes,
)
def llama_sampler_init_top_n_sigma(n: float, /) -> llama_sampler_p:
...
# /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
# LLAMA_API struct llama_sampler * llama_sampler_init_mirostat(
# int32_t n_vocab,
# uint32_t seed,
# float tau,
# float eta,
# int32_t m);
@ctypes_function(
"llama_sampler_init_mirostat",
[ctypes.c_int32, ctypes.c_uint32, ctypes.c_float, ctypes.c_float, ctypes.c_int32],
llama_sampler_p_ctypes,
)
def llama_sampler_init_mirostat(
n_vocab: int, seed: int, tau: float, eta: float, m: int, /
) -> llama_sampler_p:
...
# /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
# LLAMA_API struct llama_sampler * llama_sampler_init_mirostat_v2(
# uint32_t seed,
# float tau,
# float eta);
@ctypes_function(
"llama_sampler_init_mirostat_v2",
[ctypes.c_uint32, ctypes.c_float, ctypes.c_float],
llama_sampler_p_ctypes,
)
def llama_sampler_init_mirostat_v2(
seed: int, tau: float, eta: float, /
) -> llama_sampler_p:
...
# /// @details Intializes a GBNF grammar, see grammars/README.md for details.
# LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
# const struct llama_vocab * vocab,
# const char * grammar_str,
# const char * grammar_root);
@ctypes_function(
"llama_sampler_init_grammar",
[llama_vocab_p_ctypes, ctypes.c_char_p, ctypes.c_char_p],
llama_sampler_p_ctypes,
)
def llama_sampler_init_grammar(
vocab: llama_vocab_p, grammar_str: bytes, grammar_root: bytes, /
) -> llama_sampler_p:
...
# DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_grammar_lazy(
# const struct llama_vocab * vocab,
# const char * grammar_str,
# const char * grammar_root,
# const char ** trigger_words,
# size_t num_trigger_words,
# const llama_token * trigger_tokens,
# size_t num_trigger_tokens),
# "use llama_sampler_init_grammar_lazy_patterns instead");
@ctypes_function(
"llama_sampler_init_grammar_lazy",
[
llama_vocab_p_ctypes,
ctypes.c_char_p,
ctypes.c_char_p,
ctypes.POINTER(ctypes.c_char_p),
ctypes.c_size_t,
ctypes.POINTER(llama_token),
ctypes.c_size_t,
],
llama_sampler_p_ctypes,
)
def llama_sampler_init_grammar_lazy(
vocab: llama_vocab_p,
grammar_str: bytes,
grammar_root: bytes,
trigger_words: CtypesArray[bytes],
num_trigger_words: int,
trigger_tokens: CtypesArray[llama_token],
num_trigger_tokens: int,
/,
) -> llama_sampler_p:
...
# /// @details Lazy grammar sampler, introduced in https://github.com/ggml-org/llama.cpp/pull/9639
# LLAMA_API struct llama_sampler * llama_sampler_init_grammar_lazy_patterns(
# const struct llama_vocab * vocab,
# const char * grammar_str,
# const char * grammar_root,
# const char ** trigger_patterns,
# size_t num_trigger_patterns,
# const llama_token * trigger_tokens,
# size_t num_trigger_tokens);
@ctypes_function(
"llama_sampler_init_grammar_lazy_patterns",
[
llama_vocab_p_ctypes,
ctypes.c_char_p,
ctypes.c_char_p,
ctypes.POINTER(ctypes.c_char_p),
ctypes.c_size_t,
ctypes.POINTER(llama_token),
ctypes.c_size_t,
],
llama_sampler_p_ctypes,
)
def llama_sampler_init_grammar_lazy_patterns(
vocab: llama_vocab_p,
grammar_str: bytes,
grammar_root: bytes,
trigger_patterns: CtypesArray[bytes],
num_trigger_patterns: int,
trigger_tokens: CtypesArray[llama_token],
num_trigger_tokens: int,
/,
) -> llama_sampler_p:
...
# /// NOTE: Avoid using on the full vocabulary as searching for repeated tokens can become slow. For example, apply top-k or top-p sampling first.
# LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
# int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
# float penalty_repeat, // 1.0 = disabled
# float penalty_freq, // 0.0 = disabled
# float penalty_present); // 0.0 = disabled
@ctypes_function(
"llama_sampler_init_penalties",
[ctypes.c_int32, ctypes.c_float, ctypes.c_float, ctypes.c_float],
llama_sampler_p_ctypes,
)
def llama_sampler_init_penalties(
penalty_last_n: int,
penalty_repeat: float,
penalty_freq: float,
penalty_present: float,
/,
) -> llama_sampler_p:
...
# /// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
# LLAMA_API struct llama_sampler * llama_sampler_init_dry(
# const struct llama_vocab * vocab,
# int32_t n_ctx_train,
# float dry_multiplier,
# float dry_base,
# int32_t dry_allowed_length,
# int32_t dry_penalty_last_n,
# const char ** seq_breakers,
# size_t num_breakers);
@ctypes_function(
"llama_sampler_init_dry",
[
llama_vocab_p_ctypes,
ctypes.c_int32,
ctypes.c_float,
ctypes.c_float,
ctypes.c_int32,
ctypes.c_int32,
ctypes.POINTER(ctypes.c_char_p),
ctypes.c_size_t,
],
llama_sampler_p_ctypes,
)
def llama_sampler_init_dry(
vocab: llama_vocab_p,
n_ctx_train: int,
dry_multiplier: float,
dry_base: float,
dry_allowed_length: int,
dry_penalty_last_n: int,
seq_breakers,
num_breakers: int,
/,
) -> llama_sampler_p:
...
# LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias(
# int32_t n_vocab,
# int32_t n_logit_bias,
# const llama_logit_bias * logit_bias);
@ctypes_function(
"llama_sampler_init_logit_bias",
[ctypes.c_int32, ctypes.c_int32, llama_logit_bias_p],
llama_sampler_p_ctypes,
)
def llama_sampler_init_logit_bias(
n_vocab: int, n_logit_bias: int, logit_bias: CtypesArray[llama_logit_bias], /
) -> llama_sampler_p:
...
# // this sampler is meant to be used for fill-in-the-middle infilling
# LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab);
@ctypes_function(
"llama_sampler_init_infill",
[llama_vocab_p_ctypes],
llama_sampler_p_ctypes,
)
def llama_sampler_init_infill(vocab: llama_vocab_p, /) -> llama_sampler_p:
...
# // Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
# LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
@ctypes_function(
"llama_sampler_get_seed",
[llama_sampler_p_ctypes],
ctypes.c_uint32,
)
def llama_sampler_get_seed(smpl: llama_sampler_p, /) -> int:
...
# /// @details Sample and accept a token from the idx-th output of the last evaluation
# LLAMA_API llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx);
@ctypes_function(
"llama_sampler_sample",
[llama_sampler_p_ctypes, llama_context_p_ctypes, ctypes.c_int32],
llama_token,
)
def llama_sampler_sample(
smpl: llama_sampler_p, ctx: llama_context_p, idx: int, /
) -> int:
...
# //
# // Model split
# //
# /// @details Build a split GGUF final path for this chunk.
# LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
@ctypes_function(
"llama_split_path",
[ctypes.c_char_p, ctypes.c_size_t, ctypes.c_char_p, ctypes.c_int, ctypes.c_int],
ctypes.c_int,
)
def llama_split_path(
split_path: bytes,
maxlen: Union[ctypes.c_size_t, int],
path_prefix: bytes,
split_no: Union[ctypes.c_int, int],
split_count: Union[ctypes.c_int, int],
/,
) -> int:
"""Build a split GGUF final path for this chunk."""
...
# /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
# LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
@ctypes_function(
"llama_split_prefix",
[ctypes.c_char_p, ctypes.c_size_t, ctypes.c_char_p, ctypes.c_int, ctypes.c_int],
ctypes.c_int,
)
def llama_split_prefix(
split_prefix: bytes,
maxlen: Union[ctypes.c_size_t, int],
split_path: bytes,
split_no: Union[ctypes.c_int, int],
split_count: Union[ctypes.c_int, int],
/,
) -> int:
"""Extract the path prefix from the split_path if and only if the split_no and split_count match."""
...
# // Print system information
# LLAMA_API const char * llama_print_system_info(void);
@ctypes_function("llama_print_system_info", [], ctypes.c_char_p)
def llama_print_system_info() -> bytes:
...
# // Set callback for all future logging events.
# // If this is not called, or NULL is supplied, everything is output on stderr.
# LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
@ctypes_function(
"llama_log_set",
[ctypes.c_void_p, ctypes.c_void_p],
None,
)
def llama_log_set(
log_callback: Optional[CtypesFuncPointer],
user_data: ctypes.c_void_p,
/,
):
"""Set callback for all future logging events.
If this is not called, or NULL is supplied, everything is output on stderr."""
...
# //
# // Performance utils
# //
# struct llama_perf_context_data {
# double t_start_ms;
# double t_load_ms;
# double t_p_eval_ms;
# double t_eval_ms;
# int32_t n_p_eval;
# int32_t n_eval;
# };
class llama_perf_context_data(ctypes.Structure):
_fields_ = [
("t_start_ms", ctypes.c_double),
("t_load_ms", ctypes.c_double),
("t_p_eval_ms", ctypes.c_double),
("t_eval_ms", ctypes.c_double),
("n_p_eval", ctypes.c_int32),
("n_eval", ctypes.c_int32),
]
# struct llama_perf_sampler_data {
# double t_sample_ms;
# int32_t n_sample;
# };
class llama_perf_sampler_data(ctypes.Structure):
_fields_ = [
("t_sample_ms", ctypes.c_double),
("n_sample", ctypes.c_int32),
]
# LLAMA_API struct llama_perf_context_data llama_perf_context (const struct llama_context * ctx);
@ctypes_function(
"llama_perf_context",
[llama_context_p_ctypes],
llama_perf_context_data,
)
def llama_perf_context(ctx: llama_context_p, /) -> llama_perf_context_data:
...
# LLAMA_API void llama_perf_context_print(const struct llama_context * ctx);
@ctypes_function(
"llama_perf_context_print",
[llama_context_p_ctypes],
None,
)
def llama_perf_context_print(ctx: llama_context_p, /):
...
# LLAMA_API void llama_perf_context_reset( struct llama_context * ctx);
@ctypes_function(
"llama_perf_context_reset",
[llama_context_p_ctypes],
None,
)
def llama_perf_context_reset(ctx: llama_context_p, /):
...
# // NOTE: the following work only with samplers constructed via llama_sampler_chain_init
# LLAMA_API struct llama_perf_sampler_data llama_perf_sampler (const struct llama_sampler * chain);
@ctypes_function(
"llama_perf_sampler",
[llama_sampler_p_ctypes],
llama_perf_sampler_data,
)
def llama_perf_sampler(chain: llama_sampler_p, /) -> llama_perf_sampler_data:
...
# LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
@ctypes_function(
"llama_perf_sampler_print",
[llama_sampler_p_ctypes],
None,
)
def llama_perf_sampler_print(chain: llama_sampler_p, /):
...
# LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
@ctypes_function(
"llama_perf_sampler_reset",
[llama_sampler_p_ctypes],
None,
)
def llama_perf_sampler_reset(chain: llama_sampler_p, /):
...
# //
# // training
# //
# // function that returns whether or not a given tensor contains trainable parameters
# typedef bool (*llama_opt_param_filter)(const struct ggml_tensor * tensor, void * userdata);
llama_opt_param_filter = ctypes.CFUNCTYPE(ctypes.c_bool, ctypes.c_void_p, ctypes.c_void_p)
# // always returns true
# LLAMA_API bool llama_opt_param_filter_all(const struct ggml_tensor * tensor, void * userdata);
@ctypes_function(
"llama_opt_param_filter_all",
[ctypes.c_void_p, ctypes.c_void_p],
ctypes.c_bool,
)
def llama_opt_param_filter_all(tensor: ctypes.c_void_p, userdata: ctypes.c_void_p, /) -> bool:
...
# struct llama_opt_params {
# uint32_t n_ctx_train; // assumed context size post training, use context size specified in llama_context if 0
# llama_opt_param_filter param_filter; // callback for determining which tensors contain trainable parameters
# void * param_filter_ud; // userdata for determining which tensors contain trainable parameters
# ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
# void * get_opt_pars_ud; // userdata for calculating optimizer parameters
# };
class llama_opt_params(ctypes.Structure):
_fields_ = [
("n_ctx_train", ctypes.c_uint32),
("param_filter", llama_opt_param_filter),
("param_filter_ud", ctypes.c_void_p),
("get_opt_pars", ctypes.c_void_p), # ggml_opt_get_optimizer_params - not implemented here
("get_opt_pars_ud", ctypes.c_void_p),
]
# LLAMA_API void llama_opt_init(struct llama_context * lctx, struct llama_model * model, struct llama_opt_params lopt_params);
@ctypes_function(
"llama_opt_init",
[llama_context_p_ctypes, llama_model_p_ctypes, llama_opt_params],
None,
)
def llama_opt_init(lctx: llama_context_p, model: llama_model_p, lopt_params: llama_opt_params, /):
...
# LLAMA_API void llama_opt_epoch(
# struct llama_context * lctx,
# ggml_opt_dataset_t dataset,
# ggml_opt_result_t result_train,
# ggml_opt_result_t result_eval,
# int64_t idata_split,
# ggml_opt_epoch_callback callback_train,
# ggml_opt_epoch_callback callback_eval);
@ctypes_function(
"llama_opt_epoch",
[
llama_context_p_ctypes,
ctypes.c_void_p, # ggml_opt_dataset_t
ctypes.c_void_p, # ggml_opt_result_t
ctypes.c_void_p, # ggml_opt_result_t
ctypes.c_int64,
ctypes.c_void_p, # ggml_opt_epoch_callback
ctypes.c_void_p, # ggml_opt_epoch_callback
],
None,
)
def llama_opt_epoch(
lctx: llama_context_p,
dataset: ctypes.c_void_p,
result_train: ctypes.c_void_p,
result_eval: ctypes.c_void_p,
idata_split: int,
callback_train: ctypes.c_void_p,
callback_eval: ctypes.c_void_p,
/,
):
...