50 lines
1.9 KiB
Python
50 lines
1.9 KiB
Python
from sympy.core.symbol import symbols
|
|
from sympy.core.function import Function
|
|
from sympy.matrices.dense import Matrix
|
|
from sympy.matrices.dense import zeros
|
|
from sympy.simplify.simplify import simplify
|
|
from sympy.codegen.matrix_nodes import MatrixSolve
|
|
from sympy.utilities.lambdify import lambdify
|
|
from sympy.printing.numpy import NumPyPrinter
|
|
from sympy.testing.pytest import skip
|
|
from sympy.external import import_module
|
|
|
|
|
|
def test_matrix_solve_issue_24862():
|
|
A = Matrix(3, 3, symbols('a:9'))
|
|
b = Matrix(3, 1, symbols('b:3'))
|
|
hash(MatrixSolve(A, b))
|
|
|
|
|
|
def test_matrix_solve_derivative_exact():
|
|
q = symbols('q')
|
|
a11, a12, a21, a22, b1, b2 = (
|
|
f(q) for f in symbols('a11 a12 a21 a22 b1 b2', cls=Function))
|
|
A = Matrix([[a11, a12], [a21, a22]])
|
|
b = Matrix([b1, b2])
|
|
x_lu = A.LUsolve(b)
|
|
dxdq_lu = A.LUsolve(b.diff(q) - A.diff(q) * A.LUsolve(b))
|
|
assert simplify(x_lu.diff(q) - dxdq_lu) == zeros(2, 1)
|
|
# dxdq_ms is the MatrixSolve equivalent of dxdq_lu
|
|
dxdq_ms = MatrixSolve(A, b.diff(q) - A.diff(q) * MatrixSolve(A, b))
|
|
assert MatrixSolve(A, b).diff(q) == dxdq_ms
|
|
|
|
|
|
def test_matrix_solve_derivative_numpy():
|
|
np = import_module('numpy')
|
|
if not np:
|
|
skip("numpy not installed.")
|
|
q = symbols('q')
|
|
a11, a12, a21, a22, b1, b2 = (
|
|
f(q) for f in symbols('a11 a12 a21 a22 b1 b2', cls=Function))
|
|
A = Matrix([[a11, a12], [a21, a22]])
|
|
b = Matrix([b1, b2])
|
|
dx_lu = A.LUsolve(b).diff(q)
|
|
subs = {a11.diff(q): 0.2, a12.diff(q): 0.3, a21.diff(q): 0.1,
|
|
a22.diff(q): 0.5, b1.diff(q): 0.4, b2.diff(q): 0.9,
|
|
a11: 1.3, a12: 0.5, a21: 1.2, a22: 4, b1: 6.2, b2: 3.5}
|
|
p, p_vals = zip(*subs.items())
|
|
dx_sm = MatrixSolve(A, b).diff(q)
|
|
np.testing.assert_allclose(
|
|
lambdify(p, dx_sm, printer=NumPyPrinter)(*p_vals),
|
|
lambdify(p, dx_lu, printer=NumPyPrinter)(*p_vals))
|