team-10/venv/Lib/site-packages/transformers/models/colqwen2/configuration_colqwen2.py
2025-08-02 02:00:33 +02:00

94 lines
3.6 KiB
Python

# Copyright 2025 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
from typing import Any
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
class ColQwen2Config(PretrainedConfig):
r"""
Configuration class to store the configuration of a [`ColQ2en2ForRetrieval`]. It is used to instantiate an instance
of `ColQwen2ForRetrieval` according to the specified arguments, defining the model architecture following the methodology
from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
Instantiating a configuration with the defaults will yield a similar configuration to the vision encoder used by the pre-trained
ColQwen2-v1.0 model, e.g. [vidore/colqwen2-v1.0-hf](https://huggingface.co/vidore/colqwen2-v1.0-hf).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vlm_config (`PretrainedConfig`, *optional*):
Configuration of the VLM backbone model.
embedding_dim (`int`, *optional*, defaults to 128):
Dimension of the multi-vector embeddings produced by the model.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
from transformers.models.colqwen2 import ColQwen2Config, ColQwen2ForRetrieval
config = ColQwen2Config()
model = ColQwen2ForRetrieval(config)
```
"""
model_type = "colqwen2"
sub_configs: dict[str, Any] = {"vlm_config": PretrainedConfig}
def __init__(
self,
vlm_config=None,
embedding_dim: int = 128,
initializer_range: float = 0.02,
**kwargs,
):
if vlm_config is None:
vlm_config = CONFIG_MAPPING["qwen2_vl"]()
logger.info(
"`vlm_config` is `None`. Initializing `vlm_config` with the `Qwen2VLConfig` with default values."
)
elif isinstance(vlm_config, dict):
vlm_config = deepcopy(vlm_config)
if "model_type" not in vlm_config:
raise KeyError(
"The `model_type` key is missing in the `vlm_config` dictionary. Please provide the model type."
)
vlm_config = CONFIG_MAPPING[vlm_config["model_type"]](**vlm_config)
elif isinstance(vlm_config, PretrainedConfig):
vlm_config = vlm_config
else:
raise TypeError(
f"Invalid type for `vlm_config`. Expected `PretrainedConfig`, `dict`, or `None`, but got {type(vlm_config)}."
)
self.vlm_config = vlm_config
self.embedding_dim = embedding_dim
self.initializer_range = initializer_range
super().__init__(**kwargs)
def get_text_config(self, decoder=False) -> PretrainedConfig:
return self.vlm_config.get_text_config(decoder=decoder)
__all__ = ["ColQwen2Config"]