team-10/venv/Lib/site-packages/transformers/models/kosmos2/modeling_kosmos2.py
2025-08-02 02:00:33 +02:00

1859 lines
81 KiB
Python

# coding=utf-8
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch KOSMOS-2 model."""
import math
from dataclasses import dataclass
from typing import Any, Callable, Optional, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, EncoderDecoderCache
from ...generation import GenerationMixin
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPooling,
CausalLMOutputWithCrossAttentions,
)
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import ModelOutput, TransformersKwargs, auto_docstring, can_return_tuple, logging, torch_int
from .configuration_kosmos2 import Kosmos2Config, Kosmos2TextConfig, Kosmos2VisionConfig
logger = logging.get_logger(__name__)
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
def _make_causal_mask(
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
@dataclass
@auto_docstring(
custom_intro="""
Base class for text model's outputs that also contains a pooling of the last hidden states.
"""
)
class Kosmos2ModelOutput(ModelOutput):
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
projection_attentions (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights given by `Kosmos2ImageToTextProjection`, after the attention softmax, used to compute
the weighted average in the self-attention heads.
vision_model_output (`BaseModelOutputWithPooling`, *optional*):
The output of the [`Kosmos2VisionModel`].
"""
last_hidden_state: Optional[torch.FloatTensor] = None
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None
hidden_states: Optional[tuple[torch.FloatTensor]] = None
attentions: Optional[tuple[torch.FloatTensor]] = None
image_embeds: Optional[torch.FloatTensor] = None
projection_attentions: Optional[tuple[torch.FloatTensor]] = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
@dataclass
@auto_docstring(
custom_intro="""
Model output class for `Kosmos2ForConditionalGeneration`.
"""
)
class Kosmos2ForConditionalGenerationModelOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
projection_attentions (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights given by `Kosmos2ImageToTextProjection`, after the attention softmax, used to compute
the weighted average in the self-attention heads.
vision_model_output (`BaseModelOutputWithPooling`, *optional*):
The output of the [`Kosmos2VisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None
hidden_states: Optional[tuple[torch.FloatTensor]] = None
attentions: Optional[tuple[torch.FloatTensor]] = None
image_embeds: Optional[torch.FloatTensor] = None
projection_attentions: Optional[tuple[torch.FloatTensor]] = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Kosmos2
class Kosmos2VisionEmbeddings(nn.Module):
def __init__(self, config: Kosmos2VisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
position_embedding = self.position_embedding.weight.unsqueeze(0)
num_positions = position_embedding.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embedding(self.position_ids)
class_pos_embed = position_embedding[:, :1]
patch_pos_embed = position_embedding[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})."
)
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Adapted from transformers.models.siglip.modeling_siglip.eager_attention_forward -> Kosmos2 doesn't cast attn weights to fp32
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Kosmos2VisionAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.is_causal = False
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, seq_length, embed_dim = hidden_states.shape
queries = self.q_proj(hidden_states)
keys = self.k_proj(hidden_states)
values = self.v_proj(hidden_states)
queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
# CLIP text model uses both `causal_attention_mask` and `attention_mask`
# in case FA2 kernel is called, `is_causal` should be inferred from `causal_attention_mask`
if self.config._attn_implementation != "flash_attention_2":
if attention_mask is not None and causal_attention_mask is not None:
attention_mask = attention_mask + causal_attention_mask
elif causal_attention_mask is not None:
attention_mask = causal_attention_mask
else:
self.is_causal = causal_attention_mask is not None
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and output_attentions:
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
queries,
keys,
values,
attention_mask,
is_causal=self.is_causal,
scaling=self.scale,
dropout=0.0 if not self.training else self.dropout,
)
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Kosmos2Vision
class Kosmos2VisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoderLayer with AltCLIP->Kosmos2Vision
class Kosmos2VisionEncoderLayer(GradientCheckpointingLayer):
def __init__(self, config: Kosmos2VisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = Kosmos2VisionAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = Kosmos2VisionMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->Kosmos2Vision
class Kosmos2VisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`Kosmos2VisionEncoderLayer`].
Args:
config: Kosmos2VisionConfig
"""
def __init__(self, config: Kosmos2VisionConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([Kosmos2VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
@can_return_tuple
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
# Similar to `transformers.models.clip.modeling_clip.CLIPVisionTransformer` but without docstring for `forward`
class Kosmos2VisionTransformer(nn.Module):
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPVisionTransformer.__init__ with AltCLIPVision->Kosmos2Vision,ALTCLIP_VISION->KOSMOS2_VISION,AltCLIP->Kosmos2Vision
def __init__(self, config: Kosmos2VisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = Kosmos2VisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = Kosmos2VisionEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# Similar to `transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding` but allowing to pass `position_ids`
class Kosmos2TextSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.__init__
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__()
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.make_weights
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.register_buffer("weights", emb_weights, persistent=False)
@staticmethod
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.get_embedding
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values_length: int = 0,
position_ids: Optional[torch.Tensor] = None,
):
if input_ids is not None:
bsz, seq_len = input_ids.size()
if position_ids is None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(
input_ids, self.padding_idx, past_key_values_length
).to(input_ids.device)
else:
bsz, seq_len = inputs_embeds.size()[:-1]
if position_ids is None:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.create_position_ids_from_inputs_embeds
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
class KosmosTextAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
# Similar to transformers.models.bart.modeling_bart.BartAttention.__init__ except an additional `inner_attn_ln`.
def __init__(
self,
config,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: Optional[bool] = False,
add_inner_attn_layernorm: Optional[bool] = False,
bias: Optional[bool] = True,
layer_idx: Optional[bool] = None,
):
super().__init__()
self.config = config
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.layer_idx = layer_idx
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
# End opy
self.inner_attn_ln = None
if add_inner_attn_layernorm:
self.inner_attn_ln = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
cache_position: Optional[torch.Tensor] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = encoder_hidden_states is not None
batch_size, seq_length = hidden_states.shape[:2]
query_states = self.q_proj(hidden_states)
query_states = query_states.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
if past_key_value is not None:
if isinstance(past_key_value, EncoderDecoderCache):
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
curr_past_key_value = past_key_value.cross_attention_cache
else:
curr_past_key_value = past_key_value.self_attention_cache
else:
curr_past_key_value = past_key_value
current_states = encoder_hidden_states if is_cross_attention else hidden_states
if is_cross_attention and past_key_value is not None and is_updated:
# reuse k,v, cross_attentions
key_states = curr_past_key_value.key_cache[self.layer_idx]
value_states = curr_past_key_value.value_cache[self.layer_idx]
else:
key_states = self.k_proj(current_states)
value_states = self.v_proj(current_states)
key_states = key_states.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
if past_key_value is not None:
# save all key/value_states to cache to be re-used for fast auto-regressive generation
cache_position = cache_position if not is_cross_attention else None
key_states, value_states = curr_past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
# set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
if is_cross_attention:
past_key_value.is_updated[self.layer_idx] = True
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and output_attentions:
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous()
if self.inner_attn_ln is not None:
attn_output = self.inner_attn_ln(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class Kosmos2TextFFN(nn.Module):
def __init__(self, config: Kosmos2TextConfig):
super().__init__()
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(config.embed_dim, config.ffn_dim)
self.fc2 = nn.Linear(config.ffn_dim, config.embed_dim)
self.ffn_layernorm = nn.LayerNorm(config.ffn_dim, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.ffn_layernorm(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
return hidden_states
class Kosmos2TextBlock(GradientCheckpointingLayer):
def __init__(self, config: Kosmos2TextConfig, layer_idx=None):
super().__init__()
self.embed_dim = config.embed_dim
self.self_attn = KosmosTextAttention(
config,
embed_dim=self.embed_dim,
num_heads=config.attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
add_inner_attn_layernorm=True,
layer_idx=layer_idx,
)
self.dropout = config.dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
if config.add_cross_attention:
self.encoder_attn = KosmosTextAttention(
config,
embed_dim=self.embed_dim,
num_heads=config.attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
add_inner_attn_layernorm=False,
layer_idx=layer_idx,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.ffn = Kosmos2TextFFN(config)
self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
cache_position: Optional[torch.Tensor] = None,
**kwargs,
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
cache_position=cache_position,
**kwargs,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
if not hasattr(self, "encoder_attn"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
cache_position=cache_position,
**kwargs,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
# FFN
hidden_states = self.ffn(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
class Kosmos2TextTransformer(nn.Module):
"""
Transformer decoder consisting of `config.layers` layers. Each layer is a [`Kosmos2TextBlock`].
Args:
config: Kosmos2TextConfig
"""
def __init__(self, config: Kosmos2TextConfig):
super().__init__()
self.config = config
self.dropout = config.dropout
self.layerdrop = config.layerdrop
self.embed_scale = math.sqrt(config.embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, config.embed_dim, padding_idx=config.pad_token_id)
self.embed_positions = Kosmos2TextSinusoidalPositionalEmbedding(
num_positions=config.max_position_embeddings,
embedding_dim=config.embed_dim,
padding_idx=config.pad_token_id,
)
self.layers = nn.ModuleList([Kosmos2TextBlock(config, layer_idx=i) for i in range(config.layers)])
self.layer_norm = nn.LayerNorm(config.embed_dim, config.layer_norm_eps)
self.gradient_checkpointing = False
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward_embedding(
self,
input_ids,
inputs_embeds: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
img_input_mask: Optional[torch.Tensor] = None,
past_key_values_length: int = 0,
position_ids: Optional[torch.Tensor] = None,
):
# The argument `inputs_embeds` should be the one without being multiplied by `self.embed_scale`.
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if image_embeds is not None:
inputs_embeds[img_input_mask.to(dtype=torch.bool)] = image_embeds.to(inputs_embeds.device).view(
-1, image_embeds.size(-1)
)
inputs_embeds = inputs_embeds * self.embed_scale
# embed positions
positions = self.embed_positions(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
position_ids=position_ids,
)
positions = positions.to(inputs_embeds.device)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
return hidden_states
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[list[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Union[tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
logger.warning_once(
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.58.0. "
"You should pass an instance of `EncoderDecoderCache` instead, e.g. "
"`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`."
)
return_legacy_cache = True
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
# We don't need img info. when `past_key_values_length` > 0
if past_key_values_length > 0:
image_embeds = None
image_embeds_position_mask = None
hidden_states = self.forward_embedding(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
image_embeds=image_embeds,
img_input_mask=image_embeds_position_mask,
past_key_values_length=past_key_values_length,
position_ids=position_ids,
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, input_shape, hidden_states, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://huggingface.co/papers/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
layer_outputs = decoder_layer(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None),
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add final layer norm
hidden_states = self.layer_norm(hidden_states)
if return_legacy_cache:
past_key_values = past_key_values.to_legacy_cache()
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@auto_docstring
class Kosmos2PreTrainedModel(PreTrainedModel):
config: Kosmos2Config
supports_gradient_checkpointing = True
_no_split_modules = ["Kosmos2VisionEncoderLayer", "Kosmos2TextBlock"]
_supports_attention_backend = True
_supports_flash_attn = True
_supports_sdpa = True
def _init_weights(self, module: nn.Module):
"""Initialize the weights"""
if isinstance(self, Kosmos2VisionModel):
factor = self.config.initializer_factor
elif isinstance(self, (Kosmos2Model, Kosmos2ForConditionalGeneration)):
factor = self.config.vision_config.initializer_factor
if isinstance(self, (Kosmos2TextModel, Kosmos2TextForCausalLM)):
std = self.config.init_std
elif isinstance(self, (Kosmos2Model, Kosmos2ForConditionalGeneration)):
std = self.config.text_config.init_std
if isinstance(module, Kosmos2VisionEmbeddings):
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
elif isinstance(module, Kosmos2VisionAttention):
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (module.embed_dim**-0.5) * factor
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
elif isinstance(module, Kosmos2VisionMLP):
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
elif isinstance(module, KosmosTextAttention):
nn.init.normal_(module.q_proj.weight, std=std)
nn.init.normal_(module.k_proj.weight, std=std)
nn.init.normal_(module.v_proj.weight, std=std)
nn.init.normal_(module.out_proj.weight, std=std)
elif isinstance(module, Kosmos2TextFFN):
nn.init.normal_(module.fc1.weight, std=std)
nn.init.normal_(module.fc2.weight, std=std)
elif isinstance(module, Kosmos2TextForCausalLM):
nn.init.normal_(module.lm_head.weight, std=std)
elif isinstance(module, Kosmos2ImageToTextProjection):
nn.init.normal_(module.dense.weight, std=std)
nn.init.normal_(module.latent_query)
elif isinstance(module, Kosmos2TextTransformer):
module.embed_tokens.weight.data.normal_(mean=0.0, std=std)
if module.embed_tokens.padding_idx is not None:
module.embed_tokens.weight.data[module.embed_tokens.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
class Kosmos2VisionModel(Kosmos2PreTrainedModel):
config: Kosmos2VisionConfig
main_input_name = "pixel_values"
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2,self.vision_model->self.model
def __init__(self, config: Kosmos2VisionConfig):
super().__init__(config)
self.model = Kosmos2VisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.get_input_embeddings with CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2,self.vision_model->self.model
def get_input_embeddings(self) -> nn.Module:
return self.model.embeddings.patch_embedding
@auto_docstring
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
return self.model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
class Kosmos2TextModel(Kosmos2PreTrainedModel):
config: Kosmos2TextConfig
def __init__(self, config: Kosmos2TextConfig):
super().__init__(config)
self.model = Kosmos2TextTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.model.embed_tokens
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[list[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Union[tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
image_embeds_position_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to indicate the location in a sequence to insert the image features . Mask values selected in `[0,
1]`:
- 1 for places where to put the image features,
- 0 for places that are not for image features (i.e. for text tokens).
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
"""
return self.model(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
@auto_docstring(
custom_intro="""
The text model from KOSMOS-2 with a language modeling head on top (linear layer with weights tied to the input
embeddings).
"""
)
class Kosmos2TextForCausalLM(Kosmos2PreTrainedModel, GenerationMixin):
config: Kosmos2TextConfig
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: Kosmos2TextConfig):
super().__init__(config)
self.model = Kosmos2TextTransformer(config)
self.lm_head = nn.Linear(in_features=config.embed_dim, out_features=config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.model.embed_tokens
def get_output_embeddings(self) -> nn.Module:
return self.lm_head
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[list[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, CausalLMOutputWithCrossAttentions]:
r"""
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
image_embeds_position_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to indicate the location in a sequence to insert the image features . Mask values selected in `[0,
1]`:
- 1 for places where to put the image features,
- 0 for places that are not for image features (i.e. for text tokens).
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
cache_position=cache_position,
**kwargs,
)
lm_logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
loss = self.loss_function(logits=lm_logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
image_embeds=None,
image_embeds_position_mask=None,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
use_cache=None,
cache_position=None,
**model_kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
if cache_position[0] != 0:
image_embeds = None
image_embeds_position_mask = None
# appending `False` to `image_embeds_position_mask` (because `input_ids` grows during generation)
elif image_embeds_position_mask is not None:
batch_size, seq_len = inputs_embeds.size()[:-1] if inputs_embeds is not None else input_ids.size()
mask_len = image_embeds_position_mask.size()[-1]
image_embeds_position_mask = torch.cat(
(
image_embeds_position_mask,
torch.zeros(size=(batch_size, seq_len - mask_len), dtype=torch.bool, device=input_ids.device),
),
dim=1,
)
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**model_kwargs,
)
# Kosmos2 has offset for position ids, so we need to create them correctly in PositionEmbedding layer
model_inputs.pop("position_ids", None)
return model_inputs
class Kosmos2ImageToTextProjection(nn.Module):
"""The layer that transforms the image model's output to part of the text model's input (namely, image features)"""
def __init__(self, config: Kosmos2Config):
super().__init__()
self.dense = nn.Linear(config.vision_config.hidden_size, config.text_config.embed_dim)
self.latent_query = nn.Parameter(torch.randn(config.latent_query_num, config.text_config.embed_dim))
self.x_attn = KosmosTextAttention(
config.text_config,
config.text_config.embed_dim,
config.text_config.attention_heads,
dropout=config.text_config.attention_dropout,
is_decoder=False,
add_inner_attn_layernorm=False,
)
def forward(self, features):
hidden_states = self.dense(features)
# shape = [batch, latent_query_num, h_dim]
latent_query = self.latent_query.unsqueeze(0).expand(hidden_states.size(0), -1, -1)
key_value_states = torch.cat([hidden_states, latent_query], dim=1)
hidden_states, attn_weights = self.x_attn(
hidden_states=latent_query,
encoder_hidden_states=key_value_states,
past_key_value=None,
attention_mask=None,
output_attentions=None,
)
return hidden_states, attn_weights
@auto_docstring(
custom_intro="""
KOSMOS-2 Model for generating text and image features. The model consists of a vision encoder and a language model.
"""
)
class Kosmos2Model(Kosmos2PreTrainedModel):
config: Kosmos2Config
main_input_name = "pixel_values"
def __init__(self, config: Kosmos2Config):
super().__init__(config)
self.text_model = Kosmos2TextModel(config.text_config)
self.vision_model = Kosmos2VisionModel(config.vision_config)
self.image_to_text_projection = Kosmos2ImageToTextProjection(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.model.embed_tokens
def set_input_embeddings(self, value):
self.text_model.model.embed_tokens = value
def get_image_features(
self,
pixel_values: torch.FloatTensor,
return_attentions: Optional[bool] = False,
interpolate_pos_encoding: Optional[bool] = False,
):
"""
Encodes images into continuous embeddings that can be forwarded to the language model.
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
The tensors corresponding to the input images.
return_attentions (`bool`, *optional*, defaults to `False`):
Whether to return `projection_attentions` or not.
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
Whether to interpolate positional embeddings or not.
"""
vision_model_output = self.vision_model(
pixel_values=pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
)
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0])
# normalized features
image_embeds = nn.functional.normalize(image_embeds, dim=-1)
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds)
if return_attentions:
return image_embeds, projection_attentions
return image_embeds
@can_return_tuple
@auto_docstring
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
input_ids: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[list[torch.FloatTensor]] = None,
image_embeds: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Union[tuple, Kosmos2ModelOutput]:
r"""
image_embeds_position_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to indicate the location in a sequence to insert the image features . Mask values selected in `[0,
1]`:
- 1 for places where to put the image features,
- 0 for places that are not for image features (i.e. for text tokens).
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Kosmos2Model
>>> model = Kosmos2Model.from_pretrained("microsoft/kosmos-2-patch14-224")
>>> processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
>>> url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = (
... "<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863>"
... "</object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911>"
... "</object>"
... )
>>> inputs = processor(text=text, images=image, return_tensors="pt", add_eos_token=True)
>>> last_hidden_state = model(
... pixel_values=inputs["pixel_values"],
... input_ids=inputs["input_ids"],
... attention_mask=inputs["attention_mask"],
... image_embeds_position_mask=inputs["image_embeds_position_mask"],
... ).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 91, 2048]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_model_output = None
projection_attentions = None
if image_embeds is None:
if pixel_values is None:
raise ValueError("You have to specify either `pixel_values` or `image_embeds`.")
image_embeds, projection_attentions = self.get_image_features(
pixel_values, return_attentions=True, interpolate_pos_encoding=interpolate_pos_encoding
)
outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
**kwargs,
)
return Kosmos2ModelOutput(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_embeds=image_embeds,
projection_attentions=projection_attentions,
vision_model_output=vision_model_output,
)
@auto_docstring(
custom_intro="""
KOSMOS-2 Model for generating text and bounding boxes given an image. The model consists of a vision encoder and a
language model.
"""
)
class Kosmos2ForConditionalGeneration(Kosmos2PreTrainedModel, GenerationMixin):
config: Kosmos2Config
main_input_name = "pixel_values"
_tied_weights_keys = ["text_model.lm_head.weight"]
def __init__(self, config: Kosmos2Config):
super().__init__(config)
self.text_model = Kosmos2TextForCausalLM(config.text_config)
self.vision_model = Kosmos2VisionModel(config.vision_config)
self.image_to_text_projection = Kosmos2ImageToTextProjection(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.model.embed_tokens
def set_input_embeddings(self, value):
self.text_model.model.embed_tokens = value
def get_output_embeddings(self) -> nn.Module:
return self.text_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.text_model.set_output_embeddings(new_embeddings)
@can_return_tuple
@auto_docstring
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
input_ids: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[list[torch.FloatTensor]] = None,
image_embeds: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, Kosmos2ForConditionalGenerationModelOutput]:
r"""
image_embeds_position_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to indicate the location in a sequence to insert the image features . Mask values selected in `[0,
1]`:
- 1 for places where to put the image features,
- 0 for places that are not for image features (i.e. for text tokens).
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*):
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Kosmos2ForConditionalGeneration
>>> model = Kosmos2ForConditionalGeneration.from_pretrained("microsoft/kosmos-2-patch14-224")
>>> processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
>>> url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> prompt = "<grounding> An image of"
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
>>> generated_ids = model.generate(
... pixel_values=inputs["pixel_values"],
... input_ids=inputs["input_ids"],
... attention_mask=inputs["attention_mask"],
... image_embeds=None,
... image_embeds_position_mask=inputs["image_embeds_position_mask"],
... use_cache=True,
... max_new_tokens=64,
... )
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False)
>>> processed_text
'<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>.'
>>> caption, entities = processor.post_process_generation(generated_text)
>>> caption
'An image of a snowman warming himself by a fire.'
>>> entities
[('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
vision_model_output = None
projection_attentions = None
if image_embeds is None:
if pixel_values is None:
raise ValueError("You have to specify either `pixel_values` or `image_embeds`.")
vision_model_output = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0])
# normalized features
image_embeds = nn.functional.normalize(image_embeds, dim=-1)
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds)
lm_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
**kwargs,
)
return Kosmos2ForConditionalGenerationModelOutput(
loss=lm_outputs.loss,
logits=lm_outputs.logits,
past_key_values=lm_outputs.past_key_values,
hidden_states=lm_outputs.hidden_states,
attentions=lm_outputs.attentions,
image_embeds=image_embeds,
projection_attentions=projection_attentions,
vision_model_output=vision_model_output,
)
def generate(
self,
pixel_values: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
):
# in order to allow `inputs` argument (as in `GenerationMixin`)
inputs = kwargs.pop("inputs", None)
if pixel_values is not None and inputs is not None:
raise ValueError(
f"`inputs`: {inputs} were passed alongside `pixel_values` which is not allowed."
f"Make sure to either pass `inputs` or pixel_values=..."
)
if pixel_values is None and inputs is not None:
pixel_values = inputs
if image_embeds is None:
vision_model_output = self.vision_model(pixel_values)
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0])
# normalized features
image_embeds = nn.functional.normalize(image_embeds, dim=-1)
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds)
output = self.text_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
inputs_embeds=inputs_embeds,
**kwargs,
)
return output
__all__ = ["Kosmos2ForConditionalGeneration", "Kosmos2Model", "Kosmos2PreTrainedModel"]