team-10/venv/Lib/site-packages/transformers/models/udop/processing_udop.py
2025-08-02 02:00:33 +02:00

207 lines
9.1 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for UDOP.
"""
from typing import Optional, Union
from transformers import logging
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack
from ...tokenization_utils_base import PreTokenizedInput, TextInput
logger = logging.get_logger(__name__)
class UdopTextKwargs(TextKwargs, total=False):
word_labels: Optional[Union[list[int], list[list[int]]]]
boxes: Union[list[list[int]], list[list[list[int]]]]
class UdopProcessorKwargs(ProcessingKwargs, total=False):
text_kwargs: UdopTextKwargs
_defaults = {
"text_kwargs": {
"add_special_tokens": True,
"padding": False,
"truncation": False,
"stride": 0,
"return_overflowing_tokens": False,
"return_special_tokens_mask": False,
"return_offsets_mapping": False,
"return_length": False,
"verbose": True,
},
"images_kwargs": {},
}
class UdopProcessor(ProcessorMixin):
r"""
Constructs a UDOP processor which combines a LayoutLMv3 image processor and a UDOP tokenizer into a single processor.
[`UdopProcessor`] offers all the functionalities you need to prepare data for the model.
It first uses [`LayoutLMv3ImageProcessor`] to resize, rescale and normalize document images, and optionally applies OCR
to get words and normalized bounding boxes. These are then provided to [`UdopTokenizer`] or [`UdopTokenizerFast`],
which turns the words and bounding boxes into token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`.
Optionally, one can provide integer `word_labels`, which are turned into token-level `labels` for token
classification tasks (such as FUNSD, CORD).
Additionally, it also supports passing `text_target` and `text_pair_target` to the tokenizer, which can be used to
prepare labels for language modeling tasks.
Args:
image_processor (`LayoutLMv3ImageProcessor`):
An instance of [`LayoutLMv3ImageProcessor`]. The image processor is a required input.
tokenizer (`UdopTokenizer` or `UdopTokenizerFast`):
An instance of [`UdopTokenizer`] or [`UdopTokenizerFast`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "LayoutLMv3ImageProcessor"
tokenizer_class = ("UdopTokenizer", "UdopTokenizerFast")
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
def __call__(
self,
images: Optional[ImageInput] = None,
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[UdopProcessorKwargs],
) -> BatchFeature:
"""
This method first forwards the `images` argument to [`~UdopImageProcessor.__call__`]. In case
[`UdopImageProcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and
bounding boxes along with the additional arguments to [`~UdopTokenizer.__call__`] and returns the output,
together with the prepared `pixel_values`. In case [`UdopImageProcessor`] was initialized with `apply_ocr` set
to `False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along with the
additional arguments to [`~UdopTokenizer.__call__`] and returns the output, together with the prepared
`pixel_values`.
Alternatively, one can pass `text_target` and `text_pair_target` to prepare the targets of UDOP.
Please refer to the docstring of the above two methods for more information.
"""
# verify input
output_kwargs = self._merge_kwargs(
UdopProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
boxes = output_kwargs["text_kwargs"].pop("boxes", None)
word_labels = output_kwargs["text_kwargs"].pop("word_labels", None)
text_pair = output_kwargs["text_kwargs"].pop("text_pair", None)
return_overflowing_tokens = output_kwargs["text_kwargs"].get("return_overflowing_tokens", False)
return_offsets_mapping = output_kwargs["text_kwargs"].get("return_offsets_mapping", False)
text_target = output_kwargs["text_kwargs"].get("text_target", None)
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True."
)
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True."
)
if return_overflowing_tokens and not return_offsets_mapping:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping.")
if text_target is not None:
# use the processor to prepare the targets of UDOP
return self.tokenizer(
**output_kwargs["text_kwargs"],
)
else:
# use the processor to prepare the inputs of UDOP
# first, apply the image processor
features = self.image_processor(images=images, **output_kwargs["images_kwargs"])
features_words = features.pop("words", None)
features_boxes = features.pop("boxes", None)
output_kwargs["text_kwargs"].pop("text_target", None)
output_kwargs["text_kwargs"].pop("text_pair_target", None)
output_kwargs["text_kwargs"]["text_pair"] = text_pair
output_kwargs["text_kwargs"]["boxes"] = boxes if boxes is not None else features_boxes
output_kwargs["text_kwargs"]["word_labels"] = word_labels
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(text, str):
text = [text] # add batch dimension (as the image processor always adds a batch dimension)
output_kwargs["text_kwargs"]["text_pair"] = features_words
encoded_inputs = self.tokenizer(
text=text if text is not None else features_words,
**output_kwargs["text_kwargs"],
)
# add pixel values
if return_overflowing_tokens is True:
features["pixel_values"] = self.get_overflowing_images(
features["pixel_values"], encoded_inputs["overflow_to_sample_mapping"]
)
features.update(encoded_inputs)
return features
# Copied from transformers.models.layoutlmv3.processing_layoutlmv3.LayoutLMv3Processor.get_overflowing_images
def get_overflowing_images(self, images, overflow_to_sample_mapping):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
images_with_overflow = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx])
if len(images_with_overflow) != len(overflow_to_sample_mapping):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
f" {len(images_with_overflow)} and {len(overflow_to_sample_mapping)}"
)
return images_with_overflow
# Copied from transformers.models.layoutlmv3.processing_layoutlmv3.LayoutLMv3Processor.batch_decode
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.layoutlmv3.processing_layoutlmv3.LayoutLMv3Processor.decode
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
return ["pixel_values", "input_ids", "bbox", "attention_mask"]
__all__ = ["UdopProcessor"]