team-10/venv/Lib/site-packages/transformers/models/voxtral/processing_voxtral.py
2025-08-02 02:00:33 +02:00

461 lines
20 KiB
Python

# coding=utf-8
# Copyright 2025 Sesame and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import warnings
from typing import Optional, Union
from ...utils import is_mistral_common_available, is_soundfile_available, is_torch_available, logging
if is_torch_available():
import torch
if is_soundfile_available():
import soundfile as sf
if is_mistral_common_available():
from mistral_common.protocol.transcription.request import TranscriptionRequest
from ...audio_utils import AudioInput, load_audio_as, make_list_of_audio
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import AllKwargsForChatTemplate, AudioKwargs, ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import PreTokenizedInput, TextInput
logger = logging.get_logger(__name__)
class VoxtralAudioKwargs(AudioKwargs, total=False):
max_source_positions: Optional[int]
class VoxtralProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": True,
},
"audio_kwargs": {
"sampling_rate": 16000,
"padding": True,
"truncation": False,
"pad_to_multiple_of": 480000,
"max_source_positions": 3000,
},
"common_kwargs": {
"return_tensors": "pt",
"return_dict": True,
"tokenize": True,
},
}
class VoxtralProcessor(ProcessorMixin):
r"""
Constructs a Voxtral processor which wraps [`WhisperFeatureExtractor`] and
[`MistralCommonTokenizer`] into a single processor that inherits both the audio feature extraction and
tokenizer functionalities.
Args:
feature_extractor ([`WhisperFeatureExtractor`]):
The feature extractor is a required input.
tokenizer ([`MistralCommonTokenizer`]):
The tokenizer is a required input.
"""
attributes = ["feature_extractor", "tokenizer"]
feature_extractor_class = "WhisperFeatureExtractor"
tokenizer_class = "MistralCommonTokenizer"
def __init__(
self,
feature_extractor,
tokenizer,
):
self.audio_token_id = 24
self.audio_token = tokenizer.convert_ids_to_tokens(self.audio_token_id)
super().__init__(feature_extractor, tokenizer)
def _retreive_input_features(self, audio, max_source_positions, **kwargs):
"""
Handles specific logic of Voxtral expected input features: audio arrays should be padded to next multiple of 480000 (duration is a multiple of 30s), see VoxtralProcessorKwargs' default audio_kwargs.
Then mel input features are extracted and stacked along batch dimension, splitting into chunks of max_source_positions.
"""
input_features_list = []
for audio_array in audio:
audio_inputs = self.feature_extractor(audio_array, **kwargs)
# let's split into chunks of max_source_positions, and then stack them along batch dimension
input_features = audio_inputs["input_features"].reshape(
self.feature_extractor.feature_size, -1, max_source_positions
)
input_features_list.append(input_features.transpose(0, 1))
return torch.cat(input_features_list)
def apply_chat_template(
self,
conversation: Union[list[dict[str, str]], list[list[dict[str, str]]]],
**kwargs: Unpack[AllKwargsForChatTemplate],
) -> str:
"""
This method applies the model's chat completion template given a conversation. It relies on MistralCommonTokenizer's
[`~MistralCommonTokenizer.apply_chat_template`] to prepare input ids to the model and on WhisperFeatureExtractor's
[`~WhisperFeatureExtractor.__call__`] to prepare input features to the model.
Note that audio is padded to the nearest 30-second multiple prior to mel feature extraction.
A `conversation` is a list of messages, where each message is a dictionary with a `role` and a `content` field.
For Voxtral, `role` can be `"user"` or `"assistant"`.
The `content` field can be a string or a list of dictionaries with a `type` field. See example below.
```python
from huggingface_hub import hf_hub_download
from transformers.audio_utils import load_audio_as
audio_url = "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3"
audio_path = hf_hub_download(repo_id="hf-internal-testing/dummy-audio-samples", filename="bcn_weather.mp3", repo_type="dataset")
audio_base64 = load_audio_as(audio_path, return_format="base64", force_mono=True)
# audio + text
conversation = [
{
"role": "user",
"content": [
{"type": "audio", "url": audio_url},
{"type": "audio", "path": audio_path},
{"type": "audio", "base64": audio_base64},
{"type": "text", "text": "How many audio do you hear?"},
],
},
]
processor = VoxtralProcessor.from_pretrained("mistralai/Voxtral-Mini-3B-2507")
inputs = processor.apply_chat_template(conversation)
```
Args:
conversation (`Union[list[Dict, [str, str]], list[list[dict[str, str]]]]`):
The conversation to format.
"""
if kwargs.get("continue_final_message", False):
if kwargs.get("add_generation_prompt", False):
raise ValueError(
"continue_final_message and add_generation_prompt are not compatible. Use continue_final_message when you want the model to continue the final message, and add_generation_prompt when you want to add a header that will prompt it to start a new assistant message instead."
)
if kwargs.get("return_assistant_tokens_mask", False):
raise ValueError("continue_final_message is not compatible with return_assistant_tokens_mask.")
# Fill sets of kwargs that should be used by different parts of template
processed_kwargs = {
"mm_load_kwargs": {},
"template_kwargs": {},
}
for kwarg_type in processed_kwargs:
for key in AllKwargsForChatTemplate.__annotations__[kwarg_type].__annotations__.keys():
kwarg_type_defaults = AllKwargsForChatTemplate.__annotations__[kwarg_type]
default_value = getattr(kwarg_type_defaults, key, None)
value = kwargs.pop(key, default_value)
if value is not None and not isinstance(value, dict):
processed_kwargs[kwarg_type][key] = value
# Pass unprocessed custom kwargs
processed_kwargs["template_kwargs"].update(kwargs)
if isinstance(conversation, (list, tuple)) and (
isinstance(conversation[0], (list, tuple)) or hasattr(conversation[0], "content")
):
is_batched = True
conversations = conversation
else:
is_batched = False
conversations = [conversation]
# Check for any overlapping keys between mm_load_kwargs and kwargs
mm_load_kwargs = processed_kwargs["mm_load_kwargs"]
if any(key in kwargs for key in mm_load_kwargs):
overlapping_keys = [key for key in mm_load_kwargs if key in kwargs]
logger.warning(
f"{overlapping_keys[0] if len(overlapping_keys) == 1 else ', '.join(overlapping_keys)} load multimodal data kwarg{'s' if len(overlapping_keys) > 1 else ''} {'have' if len(overlapping_keys) > 1 else 'has'} been passed to the processor, but {'they are' if len(overlapping_keys) > 1 else 'it is'} not supported for VoxtralProcessor since it relies on mistral_common directly. {'They' if len(overlapping_keys) > 1 else 'It'} will be ignored."
)
output_kwargs = self._merge_kwargs(
VoxtralProcessorKwargs,
**kwargs,
)
text_kwargs = output_kwargs["text_kwargs"]
audio_kwargs = output_kwargs["audio_kwargs"]
common_kwargs = output_kwargs["common_kwargs"]
return_tensors = common_kwargs.pop("return_tensors", None)
if return_tensors != "pt":
raise ValueError(f"{self.__class__.__name__} only supports `return_tensors='pt'`.")
tokenizer_kwargs = {**processed_kwargs["template_kwargs"], **text_kwargs}
tokenizer_kwargs["return_tensors"] = None # let's not return tensors here
tokenize = tokenizer_kwargs.pop("tokenize", False)
return_dict = tokenizer_kwargs.pop("return_dict", False)
encoded_instruct_inputs = self.tokenizer.apply_chat_template(
conversations,
tokenize=tokenize,
return_dict=return_dict,
**tokenizer_kwargs,
)
if tokenize:
if return_dict:
audio = encoded_instruct_inputs.pop("audio", None)
data = dict(encoded_instruct_inputs)
if audio is not None:
max_source_positions = audio_kwargs.pop("max_source_positions")
data["input_features"] = self._retreive_input_features(audio, max_source_positions, **audio_kwargs)
return BatchFeature(data=data, tensor_type=return_tensors)
if not is_batched:
return encoded_instruct_inputs[0]
return encoded_instruct_inputs
def __call__(
self,
text: Optional[Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]]],
**kwargs: Unpack[VoxtralProcessorKwargs],
):
r"""
Method to prepare text to be fed as input to the model. This method forwards the `text`
arguments to MistralCommonTokenizer's [`~MistralCommonTokenizer.__call__`] to encode
the text. Please refer to the docstring of the above methods for more information.
This methods does not support audio. To prepare the audio, please use:
1. `apply_chat_template` [`~VoxtralProcessor.apply_chat_template`] method.
2. `apply_transcription_request` [`~VoxtralProcessor.apply_transcription_request`] method.
Args:
text (`str`, `list[str]`, `list[list[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **input_features** -- List of audio values to be fed to a model. Returned when `audio` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
"""
if isinstance(text, str):
text = [text]
if any(self.audio_token in t for t in text):
raise ValueError(
f"{self.audio_token} is present in the provided text which is not supported by VoxtralProcessor. Please use the `apply_chat_template` method instead."
)
output_kwargs = self._merge_kwargs(
VoxtralProcessorKwargs,
**kwargs,
)
text_kwargs = output_kwargs["text_kwargs"]
common_kwargs = output_kwargs["common_kwargs"]
out = self.tokenizer(text, **text_kwargs)
return BatchFeature(data=out, tensor_type=common_kwargs.pop("return_tensors", None))
# TODO: @eustlb, this should be moved to mistral_common + testing
def apply_transcription_request(
self,
language: Union[str, list[str]],
audio: Union[str, list[str], AudioInput],
model_id: str,
sampling_rate: Optional[int] = None,
format: Optional[Union[str, list[str]]] = None,
**kwargs: Unpack[VoxtralProcessorKwargs],
):
"""
This method applies the model's transcription request template given a language and audio.
It relies on MistralCommonTokenizer and WhisperFeatureExtractor to prepare input ids and input features to the model.
```python
from transformers import VoxtralProcessor
model_id = "mistralai/Voxtral-Mini-3B-2507"
processor = VoxtralProcessor.from_pretrained(model_id)
language = "en"
audio = "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3"
inputs = processor.apply_transcription_request(language=language, audio=audio, model_id=model_id)
```
Args:
language (`str`, `list[str]`):
The language or languages of the audio. If provided as a string, will be applied uniformly to all audio.
If provided as a list, will be applied to each audio individually with a one-to-one mapping.
audio (`str`, `list[str]`, `np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`):
The audio or batch of audio to be prepared. If provided as a string, it should correspond to the path or url of the audio file.
model_id (`str`:
The hub model id of the model to use for transcription.
sampling_rate (`int`, *optional*):
The sampling rate of the audio. Necessary if it is provided as `np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`.
Used to avoid silent errors when passing audio that is not in the expected sampling rate.
format (`str`, `list[str]`, *optional*):
The format of the audio, necessary if is provided as `np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`.
"""
output_kwargs = self._merge_kwargs(
VoxtralProcessorKwargs,
**kwargs,
)
text_kwargs = output_kwargs["text_kwargs"]
audio_kwargs = output_kwargs["audio_kwargs"]
common_kwargs = output_kwargs["common_kwargs"]
is_str = isinstance(audio, str)
is_list_of_str = all(isinstance(el, str) for el in audio)
is_list_of_audio = not (is_str or is_list_of_str)
if is_list_of_audio:
if sampling_rate is None:
logger.warning_once(
f"You've provided audio without specifying the sampling rate. It will be assumed to be {audio_kwargs['sampling_rate']}, which can result in silent errors."
)
elif sampling_rate != audio_kwargs["sampling_rate"]:
raise ValueError(
f"The sampling rate of the audio ({sampling_rate}) does not match the sampling rate of the processor ({audio_kwargs['sampling_rate']}). Please provide resampled the audio to the expected sampling rate."
)
sampling_rate = audio_kwargs["sampling_rate"]
return_dict = common_kwargs.pop("return_dict", False)
tokenize = common_kwargs.pop("tokenize", False)
# make sure to remove from text_kwargs and audio_kwargs
for k in ("return_dict", "tokenize"):
text_kwargs.pop(k, None)
audio_kwargs.pop(k, None)
return_tensors = common_kwargs.pop("return_tensors", None)
if return_tensors != "pt":
raise ValueError(f"{self.__class__.__name__} only supports `return_tensors='pt'`.")
# validate audio input
if is_str:
audio = [load_audio_as(audio, return_format="buffer", force_mono=True, sampling_rate=sampling_rate)]
elif is_list_of_str:
audio = [
load_audio_as(el, return_format="buffer", force_mono=True, sampling_rate=sampling_rate) for el in audio
]
else:
audio = make_list_of_audio(audio)
if len(audio) != len(format):
raise ValueError(
f"When passed as a list of audio, the length ({len(audio)}) must match the number of format ({len(format)})"
)
audio_buffers = []
for array, f in zip(audio, format):
# Create new BytesIO object and write audio data to it
buffer = io.BytesIO()
# Convert to mono if needed
if array.ndim == 2:
array = array.mean(axis=1)
# Write to buffer with default format and sampling rate
sf.write(buffer, array, samplerate=audio_kwargs["sampling_rate"], format=f)
buffer.seek(0)
audio_buffers.append(buffer)
audio = audio_buffers
# validate language input
n_audio = len(audio)
if isinstance(language, str):
language = [language] * n_audio
if len(language) != n_audio:
raise ValueError(
f"When passed as a list of languages, the length ({len(language)}) must match the number of audio ({n_audio})"
)
input_ids = []
texts = []
audio_arrays = []
for audio_el, language_el in zip(audio, language):
openai_transcription_request = {
"model": model_id,
"file": audio_el,
"language": language_el,
}
transcription_request = TranscriptionRequest.from_openai(openai_transcription_request)
tokenized_transcription_request = self.tokenizer.tokenizer.encode_transcription(transcription_request)
input_ids.append(tokenized_transcription_request.tokens)
texts.append(tokenized_transcription_request.text)
audio_arrays.extend([el.audio_array for el in tokenized_transcription_request.audios])
if tokenize:
if return_dict:
# text are already tokenized but we need to pad etc
encoding = self.tokenizer(
input_ids,
add_special_tokens=False,
**text_kwargs,
)
data = dict(encoding)
# extract the input features
max_source_positions = audio_kwargs.pop("max_source_positions")
data["input_features"] = self._retreive_input_features(
audio_arrays, max_source_positions, **audio_kwargs
)
return BatchFeature(data=data, tensor_type=return_tensors)
return texts
# Deprecated typo'd method for backward compatibility
def apply_transcrition_request(self, *args, **kwargs):
"""
Deprecated typo'd method. Use `apply_transcription_request` instead.
"""
warnings.warn(
"`apply_transcrition_request` is deprecated due to a typo and will be removed in a future release. Please use `apply_transcription_request` instead.",
FutureWarning,
)
return self.apply_transcription_request(*args, **kwargs)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to MistralCommonTokenizer's [`~MistralCommonTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to MistralCommonTokenizer's [`~MistralCommonTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
__all__ = ["VoxtralProcessor"]