team-10/venv/Lib/site-packages/narwhals/schema.py
2025-08-02 02:00:33 +02:00

197 lines
6 KiB
Python

"""Schema.
Adapted from Polars implementation at:
https://github.com/pola-rs/polars/blob/main/py-polars/polars/schema.py.
"""
from __future__ import annotations
from collections import OrderedDict
from functools import partial
from typing import TYPE_CHECKING, cast
from narwhals._utils import Implementation, Version
if TYPE_CHECKING:
from collections.abc import Iterable, Mapping
from typing import Any, ClassVar
import polars as pl
import pyarrow as pa
from narwhals.dtypes import DType
from narwhals.typing import DTypeBackend
__all__ = ["Schema"]
class Schema(OrderedDict[str, "DType"]):
"""Ordered mapping of column names to their data type.
Arguments:
schema: The schema definition given by column names and their associated
*instantiated* Narwhals data type. Accepts a mapping or an iterable of tuples.
Examples:
Define a schema by passing *instantiated* data types.
>>> import narwhals as nw
>>> schema = nw.Schema({"foo": nw.Int8(), "bar": nw.String()})
>>> schema
Schema({'foo': Int8, 'bar': String})
Access the data type associated with a specific column name.
>>> schema["foo"]
Int8
Access various schema properties using the `names`, `dtypes`, and `len` methods.
>>> schema.names()
['foo', 'bar']
>>> schema.dtypes()
[Int8, String]
>>> schema.len()
2
"""
_version: ClassVar[Version] = Version.MAIN
def __init__(
self, schema: Mapping[str, DType] | Iterable[tuple[str, DType]] | None = None
) -> None:
schema = schema or {}
super().__init__(schema)
def names(self) -> list[str]:
"""Get the column names of the schema.
Returns:
Column names.
"""
return list(self.keys())
def dtypes(self) -> list[DType]:
"""Get the data types of the schema.
Returns:
Data types of schema.
"""
return list(self.values())
def len(self) -> int:
"""Get the number of columns in the schema.
Returns:
Number of columns.
"""
return len(self)
def to_arrow(self) -> pa.Schema:
"""Convert Schema to a pyarrow Schema.
Returns:
A pyarrow Schema.
Examples:
>>> import narwhals as nw
>>> schema = nw.Schema({"a": nw.Int64(), "b": nw.Datetime("ns")})
>>> schema.to_arrow()
a: int64
b: timestamp[ns]
"""
import pyarrow as pa # ignore-banned-import
from narwhals._arrow.utils import narwhals_to_native_dtype
return pa.schema(
(name, narwhals_to_native_dtype(dtype, self._version))
for name, dtype in self.items()
)
def to_pandas(
self, dtype_backend: DTypeBackend | Iterable[DTypeBackend] = None
) -> dict[str, Any]:
"""Convert Schema to an ordered mapping of column names to their pandas data type.
Arguments:
dtype_backend: Backend(s) used for the native types. When providing more than
one, the length of the iterable must be equal to the length of the schema.
Returns:
An ordered mapping of column names to their pandas data type.
Examples:
>>> import narwhals as nw
>>> schema = nw.Schema({"a": nw.Int64(), "b": nw.Datetime("ns")})
>>> schema.to_pandas()
{'a': 'int64', 'b': 'datetime64[ns]'}
>>> schema.to_pandas("pyarrow")
{'a': 'Int64[pyarrow]', 'b': 'timestamp[ns][pyarrow]'}
"""
from narwhals._pandas_like.utils import narwhals_to_native_dtype
to_native_dtype = partial(
narwhals_to_native_dtype,
implementation=Implementation.PANDAS,
version=self._version,
)
if dtype_backend is None or isinstance(dtype_backend, str):
return {
name: to_native_dtype(dtype=dtype, dtype_backend=dtype_backend)
for name, dtype in self.items()
}
else:
backends = tuple(dtype_backend)
if len(backends) != len(self):
from itertools import chain, islice, repeat
n_user, n_actual = len(backends), len(self)
suggestion = tuple(
islice(
chain.from_iterable(islice(repeat(backends), n_actual)), n_actual
)
)
msg = (
f"Provided {n_user!r} `dtype_backend`(s), but schema contains {n_actual!r} field(s).\n"
"Hint: instead of\n"
f" schema.to_pandas({backends})\n"
"you may want to use\n"
f" schema.to_pandas({backends[0]})\n"
f"or\n"
f" schema.to_pandas({suggestion})"
)
raise ValueError(msg)
return {
name: to_native_dtype(dtype=dtype, dtype_backend=backend)
for name, dtype, backend in zip(self.keys(), self.values(), backends)
}
def to_polars(self) -> pl.Schema:
"""Convert Schema to a polars Schema.
Returns:
A polars Schema or plain dict (prior to polars 1.0).
Examples:
>>> import narwhals as nw
>>> schema = nw.Schema({"a": nw.Int64(), "b": nw.Datetime("ns")})
>>> schema.to_polars()
Schema({'a': Int64, 'b': Datetime(time_unit='ns', time_zone=None)})
"""
import polars as pl # ignore-banned-import
from narwhals._polars.utils import narwhals_to_native_dtype
pl_version = Implementation.POLARS._backend_version()
schema = (
(name, narwhals_to_native_dtype(dtype, self._version))
for name, dtype in self.items()
)
return (
pl.Schema(schema)
if pl_version >= (1, 0, 0)
else cast("pl.Schema", dict(schema))
)