630 lines
23 KiB
Python
630 lines
23 KiB
Python
# Utilities for expression parsing
|
|
# Useful for backends which don't have any concept of expressions, such
|
|
# and pandas or PyArrow.
|
|
from __future__ import annotations
|
|
|
|
from enum import Enum, auto
|
|
from itertools import chain
|
|
from typing import TYPE_CHECKING, Any, Literal, TypeVar, cast
|
|
|
|
from narwhals._utils import is_compliant_expr
|
|
from narwhals.dependencies import is_narwhals_series, is_numpy_array
|
|
from narwhals.exceptions import InvalidOperationError, MultiOutputExpressionError
|
|
|
|
if TYPE_CHECKING:
|
|
from collections.abc import Sequence
|
|
|
|
from typing_extensions import Never, TypeIs
|
|
|
|
from narwhals._compliant import CompliantExpr, CompliantFrameT
|
|
from narwhals._compliant.typing import (
|
|
AliasNames,
|
|
CompliantExprAny,
|
|
CompliantFrameAny,
|
|
CompliantNamespaceAny,
|
|
EagerNamespaceAny,
|
|
EvalNames,
|
|
)
|
|
from narwhals.expr import Expr
|
|
from narwhals.series import Series
|
|
from narwhals.typing import IntoExpr, NonNestedLiteral, _1DArray
|
|
|
|
T = TypeVar("T")
|
|
|
|
|
|
def is_expr(obj: Any) -> TypeIs[Expr]:
|
|
"""Check whether `obj` is a Narwhals Expr."""
|
|
from narwhals.expr import Expr
|
|
|
|
return isinstance(obj, Expr)
|
|
|
|
|
|
def is_series(obj: Any) -> TypeIs[Series[Any]]:
|
|
"""Check whether `obj` is a Narwhals Expr."""
|
|
from narwhals.series import Series
|
|
|
|
return isinstance(obj, Series)
|
|
|
|
|
|
def combine_evaluate_output_names(
|
|
*exprs: CompliantExpr[CompliantFrameT, Any],
|
|
) -> EvalNames[CompliantFrameT]:
|
|
# Follow left-hand-rule for naming. E.g. `nw.sum_horizontal(expr1, expr2)` takes the
|
|
# first name of `expr1`.
|
|
if not is_compliant_expr(exprs[0]): # pragma: no cover
|
|
msg = f"Safety assertion failed, expected expression, got: {type(exprs[0])}. Please report a bug."
|
|
raise AssertionError(msg)
|
|
|
|
def evaluate_output_names(df: CompliantFrameT) -> Sequence[str]:
|
|
return exprs[0]._evaluate_output_names(df)[:1]
|
|
|
|
return evaluate_output_names
|
|
|
|
|
|
def combine_alias_output_names(*exprs: CompliantExprAny) -> AliasNames | None:
|
|
# Follow left-hand-rule for naming. E.g. `nw.sum_horizontal(expr1.alias(alias), expr2)` takes the
|
|
# aliasing function of `expr1` and apply it to the first output name of `expr1`.
|
|
if exprs[0]._alias_output_names is None:
|
|
return None
|
|
|
|
def alias_output_names(names: Sequence[str]) -> Sequence[str]:
|
|
return exprs[0]._alias_output_names(names)[:1] # type: ignore[misc]
|
|
|
|
return alias_output_names
|
|
|
|
|
|
def extract_compliant(
|
|
plx: CompliantNamespaceAny,
|
|
other: IntoExpr | NonNestedLiteral | _1DArray,
|
|
*,
|
|
str_as_lit: bool,
|
|
) -> CompliantExprAny | NonNestedLiteral:
|
|
if is_expr(other):
|
|
return other._to_compliant_expr(plx)
|
|
if isinstance(other, str) and not str_as_lit:
|
|
return plx.col(other)
|
|
if is_narwhals_series(other):
|
|
return other._compliant_series._to_expr()
|
|
if is_numpy_array(other):
|
|
ns = cast("EagerNamespaceAny", plx)
|
|
return ns._series.from_numpy(other, context=ns)._to_expr()
|
|
return other
|
|
|
|
|
|
def evaluate_output_names_and_aliases(
|
|
expr: CompliantExprAny, df: CompliantFrameAny, exclude: Sequence[str]
|
|
) -> tuple[Sequence[str], Sequence[str]]:
|
|
output_names = expr._evaluate_output_names(df)
|
|
aliases = (
|
|
output_names
|
|
if expr._alias_output_names is None
|
|
else expr._alias_output_names(output_names)
|
|
)
|
|
if exclude:
|
|
assert expr._metadata is not None # noqa: S101
|
|
if expr._metadata.expansion_kind.is_multi_unnamed():
|
|
output_names, aliases = zip(
|
|
*[
|
|
(x, alias)
|
|
for x, alias in zip(output_names, aliases)
|
|
if x not in exclude
|
|
]
|
|
)
|
|
return output_names, aliases
|
|
|
|
|
|
class ExprKind(Enum):
|
|
"""Describe which kind of expression we are dealing with."""
|
|
|
|
LITERAL = auto()
|
|
"""e.g. `nw.lit(1)`"""
|
|
|
|
AGGREGATION = auto()
|
|
"""Reduces to a single value, not affected by row order, e.g. `nw.col('a').mean()`"""
|
|
|
|
ORDERABLE_AGGREGATION = auto()
|
|
"""Reduces to a single value, affected by row order, e.g. `nw.col('a').arg_max()`"""
|
|
|
|
ELEMENTWISE = auto()
|
|
"""Preserves length, can operate without context for surrounding rows, e.g. `nw.col('a').abs()`."""
|
|
|
|
ORDERABLE_WINDOW = auto()
|
|
"""Depends on the rows around it and on their order, e.g. `diff`."""
|
|
|
|
WINDOW = auto()
|
|
"""Depends on the rows around it and possibly their order, e.g. `rank`."""
|
|
|
|
FILTRATION = auto()
|
|
"""Changes length, not affected by row order, e.g. `drop_nulls`."""
|
|
|
|
ORDERABLE_FILTRATION = auto()
|
|
"""Changes length, affected by row order, e.g. `tail`."""
|
|
|
|
NARY = auto()
|
|
"""Results from the combination of multiple expressions."""
|
|
|
|
OVER = auto()
|
|
"""Results from calling `.over` on expression."""
|
|
|
|
UNKNOWN = auto()
|
|
"""Based on the information we have, we can't determine the ExprKind."""
|
|
|
|
@property
|
|
def is_scalar_like(self) -> bool:
|
|
return self in {ExprKind.LITERAL, ExprKind.AGGREGATION}
|
|
|
|
@property
|
|
def is_orderable_window(self) -> bool:
|
|
return self in {ExprKind.ORDERABLE_WINDOW, ExprKind.ORDERABLE_AGGREGATION}
|
|
|
|
@classmethod
|
|
def from_expr(cls, obj: Expr) -> ExprKind:
|
|
meta = obj._metadata
|
|
if meta.is_literal:
|
|
return ExprKind.LITERAL
|
|
if meta.is_scalar_like:
|
|
return ExprKind.AGGREGATION
|
|
if meta.is_elementwise:
|
|
return ExprKind.ELEMENTWISE
|
|
return ExprKind.UNKNOWN
|
|
|
|
@classmethod
|
|
def from_into_expr(
|
|
cls, obj: IntoExpr | NonNestedLiteral | _1DArray, *, str_as_lit: bool
|
|
) -> ExprKind:
|
|
if is_expr(obj):
|
|
return cls.from_expr(obj)
|
|
if (
|
|
is_narwhals_series(obj)
|
|
or is_numpy_array(obj)
|
|
or (isinstance(obj, str) and not str_as_lit)
|
|
):
|
|
return ExprKind.ELEMENTWISE
|
|
return ExprKind.LITERAL
|
|
|
|
|
|
def is_scalar_like(
|
|
obj: ExprKind,
|
|
) -> TypeIs[Literal[ExprKind.LITERAL, ExprKind.AGGREGATION]]:
|
|
return obj.is_scalar_like
|
|
|
|
|
|
class ExpansionKind(Enum):
|
|
"""Describe what kind of expansion the expression performs."""
|
|
|
|
SINGLE = auto()
|
|
"""e.g. `nw.col('a'), nw.sum_horizontal(nw.all())`"""
|
|
|
|
MULTI_NAMED = auto()
|
|
"""e.g. `nw.col('a', 'b')`"""
|
|
|
|
MULTI_UNNAMED = auto()
|
|
"""e.g. `nw.all()`, nw.nth(0, 1)"""
|
|
|
|
def is_multi_unnamed(self) -> bool:
|
|
return self is ExpansionKind.MULTI_UNNAMED
|
|
|
|
def is_multi_output(self) -> bool:
|
|
return self in {ExpansionKind.MULTI_NAMED, ExpansionKind.MULTI_UNNAMED}
|
|
|
|
def __and__(self, other: ExpansionKind) -> Literal[ExpansionKind.MULTI_UNNAMED]:
|
|
if self is ExpansionKind.MULTI_UNNAMED and other is ExpansionKind.MULTI_UNNAMED:
|
|
# e.g. nw.selectors.all() - nw.selectors.numeric().
|
|
return ExpansionKind.MULTI_UNNAMED
|
|
# Don't attempt anything more complex, keep it simple and raise in the face of ambiguity.
|
|
msg = f"Unsupported ExpansionKind combination, got {self} and {other}, please report a bug." # pragma: no cover
|
|
raise AssertionError(msg) # pragma: no cover
|
|
|
|
|
|
class ExprMetadata:
|
|
"""Expression metadata.
|
|
|
|
Parameters:
|
|
expansion_kind: What kind of expansion the expression performs.
|
|
has_windows: Whether it already contains window functions.
|
|
is_elementwise: Whether it can operate row-by-row without context
|
|
of the other rows around it.
|
|
is_literal: Whether it is just a literal wrapped in an expression.
|
|
is_scalar_like: Whether it is a literal or an aggregation.
|
|
last_node: The ExprKind of the last node.
|
|
n_orderable_ops: The number of order-dependent operations. In the
|
|
lazy case, this number must be `0` by the time the expression
|
|
is evaluated.
|
|
preserves_length: Whether the expression preserves the input length.
|
|
"""
|
|
|
|
__slots__ = (
|
|
"expansion_kind",
|
|
"has_windows",
|
|
"is_elementwise",
|
|
"is_literal",
|
|
"is_scalar_like",
|
|
"last_node",
|
|
"n_orderable_ops",
|
|
"preserves_length",
|
|
)
|
|
|
|
def __init__(
|
|
self,
|
|
expansion_kind: ExpansionKind,
|
|
last_node: ExprKind,
|
|
*,
|
|
has_windows: bool = False,
|
|
n_orderable_ops: int = 0,
|
|
preserves_length: bool = True,
|
|
is_elementwise: bool = True,
|
|
is_scalar_like: bool = False,
|
|
is_literal: bool = False,
|
|
) -> None:
|
|
if is_literal:
|
|
assert is_scalar_like # noqa: S101 # debug assertion
|
|
if is_elementwise:
|
|
assert preserves_length # noqa: S101 # debug assertion
|
|
self.expansion_kind: ExpansionKind = expansion_kind
|
|
self.last_node: ExprKind = last_node
|
|
self.has_windows: bool = has_windows
|
|
self.n_orderable_ops: int = n_orderable_ops
|
|
self.is_elementwise: bool = is_elementwise
|
|
self.preserves_length: bool = preserves_length
|
|
self.is_scalar_like: bool = is_scalar_like
|
|
self.is_literal: bool = is_literal
|
|
|
|
def __init_subclass__(cls, /, *args: Any, **kwds: Any) -> Never: # pragma: no cover
|
|
msg = f"Cannot subclass {cls.__name__!r}"
|
|
raise TypeError(msg)
|
|
|
|
def __repr__(self) -> str: # pragma: no cover
|
|
return (
|
|
f"ExprMetadata(\n"
|
|
f" expansion_kind: {self.expansion_kind},\n"
|
|
f" last_node: {self.last_node},\n"
|
|
f" has_windows: {self.has_windows},\n"
|
|
f" n_orderable_ops: {self.n_orderable_ops},\n"
|
|
f" is_elementwise: {self.is_elementwise},\n"
|
|
f" preserves_length: {self.preserves_length},\n"
|
|
f" is_scalar_like: {self.is_scalar_like},\n"
|
|
f" is_literal: {self.is_literal},\n"
|
|
")"
|
|
)
|
|
|
|
@property
|
|
def is_filtration(self) -> bool:
|
|
return not self.preserves_length and not self.is_scalar_like
|
|
|
|
def with_aggregation(self) -> ExprMetadata:
|
|
if self.is_scalar_like:
|
|
msg = "Can't apply aggregations to scalar-like expressions."
|
|
raise InvalidOperationError(msg)
|
|
return ExprMetadata(
|
|
self.expansion_kind,
|
|
ExprKind.AGGREGATION,
|
|
has_windows=self.has_windows,
|
|
n_orderable_ops=self.n_orderable_ops,
|
|
preserves_length=False,
|
|
is_elementwise=False,
|
|
is_scalar_like=True,
|
|
is_literal=False,
|
|
)
|
|
|
|
def with_orderable_aggregation(self) -> ExprMetadata:
|
|
# Deprecated, used only in stable.v1.
|
|
if self.is_scalar_like: # pragma: no cover
|
|
msg = "Can't apply aggregations to scalar-like expressions."
|
|
raise InvalidOperationError(msg)
|
|
return ExprMetadata(
|
|
self.expansion_kind,
|
|
ExprKind.ORDERABLE_AGGREGATION,
|
|
has_windows=self.has_windows,
|
|
n_orderable_ops=self.n_orderable_ops + 1,
|
|
preserves_length=False,
|
|
is_elementwise=False,
|
|
is_scalar_like=True,
|
|
is_literal=False,
|
|
)
|
|
|
|
def with_elementwise_op(self) -> ExprMetadata:
|
|
return ExprMetadata(
|
|
self.expansion_kind,
|
|
ExprKind.ELEMENTWISE,
|
|
has_windows=self.has_windows,
|
|
n_orderable_ops=self.n_orderable_ops,
|
|
preserves_length=self.preserves_length,
|
|
is_elementwise=self.is_elementwise,
|
|
is_scalar_like=self.is_scalar_like,
|
|
is_literal=self.is_literal,
|
|
)
|
|
|
|
def with_window(self) -> ExprMetadata:
|
|
# Window function which may (but doesn't have to) be used with `over(order_by=...)`.
|
|
if self.is_scalar_like:
|
|
msg = "Can't apply window (e.g. `rank`) to scalar-like expression."
|
|
raise InvalidOperationError(msg)
|
|
return ExprMetadata(
|
|
self.expansion_kind,
|
|
ExprKind.WINDOW,
|
|
has_windows=self.has_windows,
|
|
# The function isn't order-dependent (but, users can still use `order_by` if they wish!),
|
|
# so we don't increment `n_orderable_ops`.
|
|
n_orderable_ops=self.n_orderable_ops,
|
|
preserves_length=self.preserves_length,
|
|
is_elementwise=False,
|
|
is_scalar_like=False,
|
|
is_literal=False,
|
|
)
|
|
|
|
def with_orderable_window(self) -> ExprMetadata:
|
|
# Window function which must be used with `over(order_by=...)`.
|
|
if self.is_scalar_like:
|
|
msg = "Can't apply orderable window (e.g. `diff`, `shift`) to scalar-like expression."
|
|
raise InvalidOperationError(msg)
|
|
return ExprMetadata(
|
|
self.expansion_kind,
|
|
ExprKind.ORDERABLE_WINDOW,
|
|
has_windows=self.has_windows,
|
|
n_orderable_ops=self.n_orderable_ops + 1,
|
|
preserves_length=self.preserves_length,
|
|
is_elementwise=False,
|
|
is_scalar_like=False,
|
|
is_literal=False,
|
|
)
|
|
|
|
def with_ordered_over(self) -> ExprMetadata:
|
|
if self.has_windows:
|
|
msg = "Cannot nest `over` statements."
|
|
raise InvalidOperationError(msg)
|
|
if self.is_elementwise or self.is_filtration:
|
|
msg = (
|
|
"Cannot use `over` on expressions which are elementwise\n"
|
|
"(e.g. `abs`) or which change length (e.g. `drop_nulls`)."
|
|
)
|
|
raise InvalidOperationError(msg)
|
|
n_orderable_ops = self.n_orderable_ops
|
|
if not n_orderable_ops and self.last_node is not ExprKind.WINDOW:
|
|
msg = (
|
|
"Cannot use `order_by` in `over` on expression which isn't orderable.\n"
|
|
"If your expression is orderable, then make sure that `over(order_by=...)`\n"
|
|
"comes immediately after the order-dependent expression.\n\n"
|
|
"Hint: instead of\n"
|
|
" - `(nw.col('price').diff() + 1).over(order_by='date')`\n"
|
|
"write:\n"
|
|
" + `nw.col('price').diff().over(order_by='date') + 1`\n"
|
|
)
|
|
raise InvalidOperationError(msg)
|
|
if self.last_node.is_orderable_window:
|
|
n_orderable_ops -= 1
|
|
return ExprMetadata(
|
|
self.expansion_kind,
|
|
ExprKind.OVER,
|
|
has_windows=True,
|
|
n_orderable_ops=n_orderable_ops,
|
|
preserves_length=True,
|
|
is_elementwise=False,
|
|
is_scalar_like=False,
|
|
is_literal=False,
|
|
)
|
|
|
|
def with_partitioned_over(self) -> ExprMetadata:
|
|
if self.has_windows:
|
|
msg = "Cannot nest `over` statements."
|
|
raise InvalidOperationError(msg)
|
|
if self.is_elementwise or self.is_filtration:
|
|
msg = (
|
|
"Cannot use `over` on expressions which are elementwise\n"
|
|
"(e.g. `abs`) or which change length (e.g. `drop_nulls`)."
|
|
)
|
|
raise InvalidOperationError(msg)
|
|
return ExprMetadata(
|
|
self.expansion_kind,
|
|
ExprKind.OVER,
|
|
has_windows=True,
|
|
n_orderable_ops=self.n_orderable_ops,
|
|
preserves_length=True,
|
|
is_elementwise=False,
|
|
is_scalar_like=False,
|
|
is_literal=False,
|
|
)
|
|
|
|
def with_filtration(self) -> ExprMetadata:
|
|
if self.is_scalar_like:
|
|
msg = "Can't apply filtration (e.g. `drop_nulls`) to scalar-like expression."
|
|
raise InvalidOperationError(msg)
|
|
return ExprMetadata(
|
|
self.expansion_kind,
|
|
ExprKind.FILTRATION,
|
|
has_windows=self.has_windows,
|
|
n_orderable_ops=self.n_orderable_ops,
|
|
preserves_length=False,
|
|
is_elementwise=False,
|
|
is_scalar_like=False,
|
|
is_literal=False,
|
|
)
|
|
|
|
def with_orderable_filtration(self) -> ExprMetadata:
|
|
if self.is_scalar_like:
|
|
msg = "Can't apply filtration (e.g. `drop_nulls`) to scalar-like expression."
|
|
raise InvalidOperationError(msg)
|
|
return ExprMetadata(
|
|
self.expansion_kind,
|
|
ExprKind.ORDERABLE_FILTRATION,
|
|
has_windows=self.has_windows,
|
|
n_orderable_ops=self.n_orderable_ops + 1,
|
|
preserves_length=False,
|
|
is_elementwise=False,
|
|
is_scalar_like=False,
|
|
is_literal=False,
|
|
)
|
|
|
|
@staticmethod
|
|
def aggregation() -> ExprMetadata:
|
|
return ExprMetadata(
|
|
ExpansionKind.SINGLE,
|
|
ExprKind.AGGREGATION,
|
|
is_elementwise=False,
|
|
preserves_length=False,
|
|
is_scalar_like=True,
|
|
)
|
|
|
|
@staticmethod
|
|
def literal() -> ExprMetadata:
|
|
return ExprMetadata(
|
|
ExpansionKind.SINGLE,
|
|
ExprKind.LITERAL,
|
|
is_elementwise=False,
|
|
preserves_length=False,
|
|
is_literal=True,
|
|
is_scalar_like=True,
|
|
)
|
|
|
|
@staticmethod
|
|
def selector_single() -> ExprMetadata:
|
|
# e.g. `nw.col('a')`, `nw.nth(0)`
|
|
return ExprMetadata(ExpansionKind.SINGLE, ExprKind.ELEMENTWISE)
|
|
|
|
@staticmethod
|
|
def selector_multi_named() -> ExprMetadata:
|
|
# e.g. `nw.col('a', 'b')`
|
|
return ExprMetadata(ExpansionKind.MULTI_NAMED, ExprKind.ELEMENTWISE)
|
|
|
|
@staticmethod
|
|
def selector_multi_unnamed() -> ExprMetadata:
|
|
# e.g. `nw.all()`
|
|
return ExprMetadata(ExpansionKind.MULTI_UNNAMED, ExprKind.ELEMENTWISE)
|
|
|
|
@classmethod
|
|
def from_binary_op(cls, lhs: Expr, rhs: IntoExpr, /) -> ExprMetadata:
|
|
# We may be able to allow multi-output rhs in the future:
|
|
# https://github.com/narwhals-dev/narwhals/issues/2244.
|
|
return combine_metadata(
|
|
lhs, rhs, str_as_lit=True, allow_multi_output=False, to_single_output=False
|
|
)
|
|
|
|
@classmethod
|
|
def from_horizontal_op(cls, *exprs: IntoExpr) -> ExprMetadata:
|
|
return combine_metadata(
|
|
*exprs, str_as_lit=False, allow_multi_output=True, to_single_output=True
|
|
)
|
|
|
|
|
|
def combine_metadata(
|
|
*args: IntoExpr | object | None,
|
|
str_as_lit: bool,
|
|
allow_multi_output: bool,
|
|
to_single_output: bool,
|
|
) -> ExprMetadata:
|
|
"""Combine metadata from `args`.
|
|
|
|
Arguments:
|
|
args: Arguments, maybe expressions, literals, or Series.
|
|
str_as_lit: Whether to interpret strings as literals or as column names.
|
|
allow_multi_output: Whether to allow multi-output inputs.
|
|
to_single_output: Whether the result is always single-output, regardless
|
|
of the inputs (e.g. `nw.sum_horizontal`).
|
|
"""
|
|
n_filtrations = 0
|
|
result_expansion_kind = ExpansionKind.SINGLE
|
|
result_has_windows = False
|
|
result_n_orderable_ops = 0
|
|
# result preserves length if at least one input does
|
|
result_preserves_length = False
|
|
# result is elementwise if all inputs are elementwise
|
|
result_is_elementwise = True
|
|
# result is scalar-like if all inputs are scalar-like
|
|
result_is_scalar_like = True
|
|
# result is literal if all inputs are literal
|
|
result_is_literal = True
|
|
|
|
for i, arg in enumerate(args):
|
|
if (isinstance(arg, str) and not str_as_lit) or is_series(arg):
|
|
result_preserves_length = True
|
|
result_is_scalar_like = False
|
|
result_is_literal = False
|
|
elif is_expr(arg):
|
|
metadata = arg._metadata
|
|
if metadata.expansion_kind.is_multi_output():
|
|
expansion_kind = metadata.expansion_kind
|
|
if i > 0 and not allow_multi_output:
|
|
# Left-most argument is always allowed to be multi-output.
|
|
msg = (
|
|
"Multi-output expressions (e.g. nw.col('a', 'b'), nw.all()) "
|
|
"are not supported in this context."
|
|
)
|
|
raise MultiOutputExpressionError(msg)
|
|
if not to_single_output:
|
|
result_expansion_kind = (
|
|
result_expansion_kind & expansion_kind
|
|
if i > 0
|
|
else expansion_kind
|
|
)
|
|
|
|
result_has_windows |= metadata.has_windows
|
|
result_n_orderable_ops += metadata.n_orderable_ops
|
|
result_preserves_length |= metadata.preserves_length
|
|
result_is_elementwise &= metadata.is_elementwise
|
|
result_is_scalar_like &= metadata.is_scalar_like
|
|
result_is_literal &= metadata.is_literal
|
|
n_filtrations += int(metadata.is_filtration)
|
|
|
|
if n_filtrations > 1:
|
|
msg = "Length-changing expressions can only be used in isolation, or followed by an aggregation"
|
|
raise InvalidOperationError(msg)
|
|
if result_preserves_length and n_filtrations:
|
|
msg = "Cannot combine length-changing expressions with length-preserving ones or aggregations"
|
|
raise InvalidOperationError(msg)
|
|
|
|
return ExprMetadata(
|
|
result_expansion_kind,
|
|
ExprKind.NARY,
|
|
has_windows=result_has_windows,
|
|
n_orderable_ops=result_n_orderable_ops,
|
|
preserves_length=result_preserves_length,
|
|
is_elementwise=result_is_elementwise,
|
|
is_scalar_like=result_is_scalar_like,
|
|
is_literal=result_is_literal,
|
|
)
|
|
|
|
|
|
def check_expressions_preserve_length(*args: IntoExpr, function_name: str) -> None:
|
|
# Raise if any argument in `args` isn't length-preserving.
|
|
# For Series input, we don't raise (yet), we let such checks happen later,
|
|
# as this function works lazily and so can't evaluate lengths.
|
|
from narwhals.series import Series
|
|
|
|
if not all(
|
|
(is_expr(x) and x._metadata.preserves_length) or isinstance(x, (str, Series))
|
|
for x in args
|
|
):
|
|
msg = f"Expressions which aggregate or change length cannot be passed to '{function_name}'."
|
|
raise InvalidOperationError(msg)
|
|
|
|
|
|
def all_exprs_are_scalar_like(*args: IntoExpr, **kwargs: IntoExpr) -> bool:
|
|
# Raise if any argument in `args` isn't an aggregation or literal.
|
|
# For Series input, we don't raise (yet), we let such checks happen later,
|
|
# as this function works lazily and so can't evaluate lengths.
|
|
exprs = chain(args, kwargs.values())
|
|
return all(is_expr(x) and x._metadata.is_scalar_like for x in exprs)
|
|
|
|
|
|
def apply_n_ary_operation(
|
|
plx: CompliantNamespaceAny,
|
|
function: Any,
|
|
*comparands: IntoExpr | NonNestedLiteral | _1DArray,
|
|
str_as_lit: bool,
|
|
) -> CompliantExprAny:
|
|
compliant_exprs = (
|
|
extract_compliant(plx, comparand, str_as_lit=str_as_lit)
|
|
for comparand in comparands
|
|
)
|
|
kinds = [
|
|
ExprKind.from_into_expr(comparand, str_as_lit=str_as_lit)
|
|
for comparand in comparands
|
|
]
|
|
|
|
broadcast = any(not kind.is_scalar_like for kind in kinds)
|
|
compliant_exprs = (
|
|
compliant_expr.broadcast(kind)
|
|
if broadcast and is_compliant_expr(compliant_expr) and is_scalar_like(kind)
|
|
else compliant_expr
|
|
for compliant_expr, kind in zip(compliant_exprs, kinds)
|
|
)
|
|
return function(*compliant_exprs)
|