team-10/env/Lib/site-packages/transformers/models/moonshine/modular_moonshine.py
2025-08-02 07:34:44 +02:00

920 lines
42 KiB
Python

# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Union
import torch
import torch.nn as nn
from transformers.utils.generic import OutputRecorder, check_model_inputs
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
from ...configuration_utils import PretrainedConfig
from ...generation import GenerationMixin
from ...masking_utils import create_causal_mask
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPast,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_rope_utils import rope_config_validation
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging
from ..glm.modeling_glm import GlmAttention, GlmRotaryEmbedding, apply_rotary_pos_emb
from ..llama.modeling_llama import LlamaDecoderLayer, LlamaModel, eager_attention_forward
from ..whisper.modeling_whisper import WhisperModel, shift_tokens_right
logger = logging.get_logger(__name__)
class MoonshineConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MoonshineModel`]. It is used to instantiate a Moonshine
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Moonshine
[UsefulSensors/moonshine-tiny](https://huggingface.co/UsefulSensors/moonshine-tiny).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32768):
Vocabulary size of the Moonshine model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MoonshineModel`].
hidden_size (`int`, *optional*, defaults to 288):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 1152):
Dimension of the MLP representations.
encoder_num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
decoder_num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer decoder.
encoder_num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
encoder_num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`encoder_num_key_value_heads=encoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if
`encoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`num_attention_heads`.
decoder_num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`decoder_num_key_value_heads=decoder_num_attention_heads`, the model will use Multi Head Attention (MHA), if
`decoder_num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`decoder_num_attention_heads`.
pad_head_dim_to_multiple_of (`int`, *optional*):
Pad head dimension in encoder and decoder to the next multiple of this value. Necessary for using certain
optimized attention implementations.
encoder_hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder.
decoder_hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
decoder_start_token_id (`int`, *optional*, defaults to 1):
Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
are provided to the `generate` function. It is used to guide the model`s generation process depending on
the task.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
partial_rotary_factor (`float`, *optional*, defaults to 0.9):
Percentage of the query and keys which will have rotary embedding.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether the model is used as an encoder/decoder or not.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
bos_token_id (`int`, *optional*, defaults to 1):
Denotes beginning of sequences token id.
eos_token_id (`int`, *optional*, defaults to 2):
Denotes end of sequences token id.
Example:
```python
>>> from transformers import MoonshineModel, MoonshineConfig
>>> # Initializing a Moonshine style configuration
>>> configuration = MoonshineConfig().from_pretrained("UsefulSensors/moonshine-tiny")
>>> # Initializing a model from the configuration
>>> model = MoonshineModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "moonshine"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_key_value_heads": "encoder_num_key_value_heads",
"num_attention_heads": "encoder_num_attention_heads",
"num_hidden_layers": "encoder_num_hidden_layers",
}
def __init__(
self,
vocab_size=32768,
hidden_size=288,
intermediate_size=1152,
encoder_num_hidden_layers=6,
decoder_num_hidden_layers=6,
encoder_num_attention_heads=8,
decoder_num_attention_heads=8,
encoder_num_key_value_heads=None,
decoder_num_key_value_heads=None,
pad_head_dim_to_multiple_of=None,
encoder_hidden_act="gelu",
decoder_hidden_act="silu",
max_position_embeddings=512,
initializer_range=0.02,
decoder_start_token_id=1,
use_cache=True,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=0.9,
is_encoder_decoder=True,
attention_bias=False,
attention_dropout=0.0,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.encoder_num_hidden_layers = encoder_num_hidden_layers
self.decoder_num_hidden_layers = decoder_num_hidden_layers
self.encoder_num_attention_heads = encoder_num_attention_heads
self.decoder_num_attention_heads = decoder_num_attention_heads
if encoder_num_key_value_heads is None:
encoder_num_key_value_heads = encoder_num_attention_heads
self.encoder_num_key_value_heads = encoder_num_key_value_heads
if decoder_num_key_value_heads is None:
decoder_num_key_value_heads = decoder_num_attention_heads
self.decoder_num_key_value_heads = decoder_num_key_value_heads
self.pad_head_dim_to_multiple_of = pad_head_dim_to_multiple_of
self.encoder_hidden_act = encoder_hidden_act
self.decoder_hidden_act = decoder_hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.partial_rotary_factor = partial_rotary_factor
self.is_encoder_decoder = is_encoder_decoder
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
# Validate the correctness of rotary position embeddings parameters
rope_config_validation(self)
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
class MoonshineEncoderMLP(nn.Module):
def __init__(self, config, hidden_act):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class MoonshineDecoderMLP(nn.Module):
def __init__(self, config, hidden_act):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size * 2)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states, gate = hidden_states.chunk(2, dim=-1)
hidden_states = self.activation_fn(gate) * hidden_states
hidden_states = self.fc2(hidden_states)
return hidden_states
class MoonshineAttention(GlmAttention):
def __init__(
self,
config: MoonshineConfig,
layer_idx: int,
is_causal: bool,
num_attention_heads: int,
num_key_value_heads: int,
):
config.update({"num_attention_heads": num_attention_heads, "num_key_value_heads": num_key_value_heads})
super().__init__(config, layer_idx)
self.is_causal = is_causal
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
# Pad head dimension to the next specified multiple.
if self.config.pad_head_dim_to_multiple_of is not None:
target_multiple = self.config.pad_head_dim_to_multiple_of
target_head_dim = target_multiple * ((self.head_dim + target_multiple - 1) // target_multiple)
self.head_dim_padding = target_head_dim - self.head_dim
else:
self.head_dim_padding = 0
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
key_value_states: Optional[torch.Tensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
bsz, q_len = hidden_states.shape[:-1]
query_states = (
self.q_proj(hidden_states).view(bsz, q_len, self.config.num_key_value_heads, self.head_dim).transpose(1, 2)
)
is_cross_attention = key_value_states is not None
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
past_key_value.is_updated[self.layer_idx] = True
past_key_value = past_key_value.cross_attention_cache
else:
past_key_value = past_key_value.self_attention_cache
# use key_value_states if cross attention
current_states = key_value_states if key_value_states is not None else hidden_states
if is_cross_attention and past_key_value and is_updated:
key_states = past_key_value.layers[self.layer_idx].keys
value_states = past_key_value.layers[self.layer_idx].values
else:
key_states = (
self.k_proj(current_states)
.view(bsz, -1, self.config.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
value_states = (
self.v_proj(current_states)
.view(bsz, -1, self.config.num_key_value_heads, self.head_dim)
.transpose(1, 2)
)
if is_cross_attention and past_key_value is not None:
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
if not is_cross_attention:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
is_causal = True if self.is_causal and attention_mask is None and q_len > 1 else False
if self.head_dim_padding > 0:
query_states = torch.nn.functional.pad(query_states, (0, self.head_dim_padding))
key_states = torch.nn.functional.pad(key_states, (0, self.head_dim_padding))
value_states = torch.nn.functional.pad(value_states, (0, self.head_dim_padding))
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
is_causal=is_causal,
**kwargs,
)
if self.head_dim_padding > 0:
attn_output = attn_output[..., : -self.head_dim_padding]
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class MoonshineRotaryEmbedding(GlmRotaryEmbedding):
pass
class MoonshineEncoderLayer(LlamaDecoderLayer):
def __init__(self, config: MoonshineConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.self_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=False,
num_attention_heads=config.encoder_num_attention_heads,
num_key_value_heads=config.encoder_num_key_value_heads,
)
self.mlp = MoonshineEncoderMLP(config, config.encoder_hidden_act)
self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
class MoonshineDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: MoonshineConfig, layer_idx: Optional[int] = None):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=True,
num_attention_heads=config.decoder_num_attention_heads,
num_key_value_heads=config.decoder_num_key_value_heads,
)
self.encoder_attn = MoonshineAttention(
config=config,
layer_idx=layer_idx,
is_causal=False,
num_attention_heads=config.decoder_num_attention_heads,
num_key_value_heads=config.decoder_num_key_value_heads,
)
self.mlp = MoonshineDecoderMLP(config, config.decoder_hidden_act)
self.input_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
self.final_layernorm = nn.LayerNorm(config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
encoder_position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
encoder_position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, _ = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
@auto_docstring
class MoonshinePreTrainedModel(PreTrainedModel):
config: MoonshineConfig
base_model_prefix = "model"
main_input_name = "input_values"
supports_gradient_checkpointing = True
_no_split_modules = ["MoonshineEncoderLayer", "MoonshineDecoderLayer"]
_supports_flash_attn = True
_supports_sdpa = True
_can_compile_fullgraph = True
# TODO arthur, how do we separate when it cross / self coming from different layer?
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
"""
output_conv1_length = int((input_lengths - 127) / 64 + 1)
output_conv2_length = int((output_conv1_length - 7) / 3 + 1)
output_conv3_length = int((output_conv2_length - 3) / 2 + 1)
return output_conv3_length
class MoonshineEncoder(MoonshinePreTrainedModel):
"""
Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MoonshineEncoderLayer`]
Args:
config: MoonshineConfig
"""
main_input_name = "input_values"
_can_record_outputs = {
"attentions": MoonshineAttention,
"hidden_states": MoonshineEncoderLayer,
}
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.config = config
embed_dim = config.hidden_size
self.conv1 = nn.Conv1d(1, embed_dim, kernel_size=127, stride=64, bias=False)
self.conv2 = nn.Conv1d(embed_dim, 2 * embed_dim, kernel_size=7, stride=3)
self.conv3 = nn.Conv1d(2 * embed_dim, embed_dim, kernel_size=3, stride=2)
self.groupnorm = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=1e-5)
self.rotary_emb = MoonshineRotaryEmbedding(config=config)
self.layers = nn.ModuleList(
[MoonshineEncoderLayer(config, idx) for idx in range(config.encoder_num_hidden_layers)]
)
self.layer_norm = nn.LayerNorm(embed_dim, bias=False)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.conv1
def set_input_embeddings(self, value: nn.Module):
self.conv1 = value
@check_model_inputs
def forward(
self,
input_values: torch.FloatTensor,
attention_mask: Optional[torch.Tensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPast:
r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Float values of the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]`, a
`numpy.ndarray` or a `torch.Tensor`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
the soundfile library (`pip install soundfile`). To prepare the array into
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
and conversion into a tensor of type `torch.FloatTensor`.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding indices in `input_values`. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
"""
input_values = input_values.unsqueeze(1)
hidden_states = nn.functional.tanh(self.conv1(input_values))
hidden_states = self.groupnorm(hidden_states)
hidden_states = nn.functional.gelu(self.conv2(hidden_states))
hidden_states = nn.functional.gelu(self.conv3(hidden_states))
hidden_states = hidden_states.permute(0, 2, 1)
# attention mask downsampling
if attention_mask is not None:
mask_len = self._get_feat_extract_output_lengths(attention_mask.shape[-1])
downsample_stride = 64 * 3 * 2 # conv strides
attention_mask = attention_mask[..., ::downsample_stride][..., :mask_len]
if self.config._attn_implementation == "flash_attention_2":
attention_mask = attention_mask if (attention_mask == 0.0).any() else None
elif self.config._attn_implementation == "sdpa":
attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, hidden_states.dtype)
else:
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
position_ids = torch.arange(0, hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for encoder_layer in self.layers:
hidden_states = encoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.layer_norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
)
class MoonshineDecoder(LlamaModel):
main_input_name = "input_ids"
_can_record_outputs = {
"attentions": OutputRecorder(MoonshineAttention, index=1, layer_name="self_attn"),
"hidden_states": MoonshineDecoderLayer,
"cross_attentions": OutputRecorder(MoonshineAttention, index=1, layer_name="encoder_attn"),
}
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.norm = nn.LayerNorm(config.hidden_size, bias=False)
self.layers = nn.ModuleList(
[MoonshineDecoderLayer(config, idx) for idx in range(config.decoder_num_hidden_layers)]
)
@check_model_inputs
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, BaseModelOutputWithPast]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding indices in `encoder_hidden_states`. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
"""
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
self_attention_cache = DynamicCache()
cross_attention_cache = DynamicCache()
past_key_values = EncoderDecoderCache(self_attention_cache, cross_attention_cache)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
hidden_states = inputs_embeds
position_embeddings = self.rotary_emb(hidden_states, position_ids)
if encoder_attention_mask is not None:
mask_len = encoder_hidden_states.shape[-2]
downsample_stride = 64 * 3 * 2 # conv strides
encoder_attention_mask = encoder_attention_mask[..., ::downsample_stride][..., :mask_len]
if self.config._attn_implementation == "flash_attention_2":
encoder_attention_mask = encoder_attention_mask if (encoder_attention_mask == 0.0).any() else None
elif self.config._attn_implementation == "sdpa":
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
encoder_attention_mask, hidden_states.dtype, hidden_states.shape[-2]
)
else:
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, hidden_states.dtype, hidden_states.shape[-2]
)
for decoder_layer in self.layers:
hidden_states = decoder_layer(
hidden_states,
causal_mask,
encoder_hidden_states, # as a positional argument for gradient checkpointing
encoder_attention_mask=encoder_attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
)
class MoonshineModel(WhisperModel):
@can_return_tuple
@auto_docstring
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[tuple[tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[EncoderDecoderCache, tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[tuple[torch.FloatTensor]] = None,
decoder_position_ids: Optional[tuple[torch.LongTensor]] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> Seq2SeqModelOutput:
r"""
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Float values of the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]`, a
`numpy.ndarray` or a `torch.Tensor`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
the soundfile library (`pip install soundfile`). To prepare the array into
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
and conversion into a tensor of type `torch.FloatTensor`.
decoder_position_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`):
Indices of positions of each input sequence tokens in the position embeddings.
Used to calculate the position embeddings up to `config.decoder_config.max_position_embeddings`
Example:
```python
>>> import torch
>>> from transformers import AutoFeatureExtractor, MoonshineModel
>>> from datasets import load_dataset
>>> model = MoonshineModel.from_pretrained("UsefulSensors/moonshine-tiny")
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("UsefulSensors/moonshine-tiny")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_values = inputs.input_values
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_values, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 288]
```
"""
if encoder_outputs is None:
encoder_outputs: BaseModelOutput = self.encoder(input_values, attention_mask=attention_mask, **kwargs)
decoder_outputs: BaseModelOutputWithPastAndCrossAttentions = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_attention_mask=attention_mask,
encoder_hidden_states=encoder_outputs.last_hidden_state,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
position_ids=decoder_position_ids,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@auto_docstring(
custom_intro="""
The Moonshine Model with a language modeling head. Can be used for automatic speech recognition.
"""
)
class MoonshineForConditionalGeneration(MoonshinePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["proj_out.weight"]
def __init__(self, config: MoonshineConfig):
super().__init__(config)
self.model = MoonshineModel(config)
self.proj_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.proj_out
def set_output_embeddings(self, new_embeddings):
self.proj_out = new_embeddings
def get_input_embeddings(self) -> nn.Module:
return self.model.get_input_embeddings()
@can_return_tuple
@auto_docstring
def forward(
self,
input_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[tuple[tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[EncoderDecoderCache, tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[tuple[torch.FloatTensor]] = None,
decoder_position_ids: Optional[tuple[torch.LongTensor]] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> Seq2SeqLMOutput:
r"""
input_values (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Float values of the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `list[float]`, a
`numpy.ndarray` or a `torch.Tensor`, *e.g.* via the torchcodec libary (`pip install torchcodec`) or
the soundfile library (`pip install soundfile`). To prepare the array into
`input_values`, the [`AutoFeatureExtractor`] should be used for padding
and conversion into a tensor of type `torch.FloatTensor`.
decoder_position_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`):
Indices of positions of each input sequence tokens in the position embeddings.
Used to calculate the position embeddings up to `config.decoder_config.max_position_embeddings`
Example:
```python
>>> import torch
>>> from transformers import AutoProcessor, MoonshineForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("UsefulSensors/moonshine-tiny")
>>> model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_values = inputs.input_values
>>> generated_ids = model.generate(input_values, max_new_tokens=100)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> transcription
'Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
```"""
if labels is not None:
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs: Seq2SeqModelOutput = self.model(
input_values,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
decoder_position_ids=decoder_position_ids,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
logits = self.proj_out(outputs.last_hidden_state)
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
return Seq2SeqLMOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
__all__ = [
"MoonshineConfig",
"MoonshineModel",
"MoonshinePreTrainedModel",
"MoonshineForConditionalGeneration",
]