team-10/venv/Lib/site-packages/transformers/models/evolla/modular_evolla.py
2025-08-02 02:00:33 +02:00

1008 lines
40 KiB
Python

# coding=utf-8
# Copyright 2025 Westlake Representational Learning Lab (Fajie Yuan Lab) team and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from dataclasses import dataclass
from typing import Optional, Union
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
from ...masking_utils import create_causal_mask
from ...modeling_outputs import (
BaseModelOutputWithPast,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithPast,
ModelOutput,
)
from ...modeling_utils import ModuleUtilsMixin, PreTrainedModel, get_parameter_dtype
from ...utils import (
auto_docstring,
can_return_tuple,
logging,
)
from ...utils.generic import check_model_inputs
from ..esm.modeling_esm import (
EsmAttention,
EsmEmbeddings,
EsmEncoder,
EsmIntermediate,
EsmLayer,
EsmOutput,
EsmPooler,
EsmSelfAttention,
EsmSelfOutput,
)
from ..llama.modeling_llama import (
LlamaAttention,
LlamaDecoderLayer,
LlamaMLP,
LlamaPreTrainedModel,
LlamaRMSNorm,
LlamaRotaryEmbedding,
)
from .configuration_evolla import EvollaConfig, SaProtConfig
logger = logging.get_logger(__name__)
class EvollaSaProtEmbeddings(EsmEmbeddings):
def __init__(self, config):
super().__init__()
# remove the position_ids in EsmEmbeddings
self.position_ids = None
def rotate_half_esm(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb_esm(x, cos, sin):
cos = cos[:, :, : x.shape[-2], :]
sin = sin[:, :, : x.shape[-2], :]
return (x * cos) + (rotate_half_esm(x) * sin)
class EvollaSaProtRotaryEmbedding(nn.Module):
"""
Rotary position embeddings based on those in
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
matrices which depend on their relative positions.
"""
def __init__(self, dim: int):
super().__init__()
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
inv_freq = inv_freq
self.register_buffer("inv_freq", inv_freq)
self._seq_len_cached = None
self._cos_cached = None
self._sin_cached = None
def _update_cos_sin_tables(self, x, seq_dimension=2):
seq_len = x.shape[seq_dimension]
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
self._seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self._cos_cached = emb.cos()[None, None, :, :]
self._sin_cached = emb.sin()[None, None, :, :]
return self._cos_cached, self._sin_cached
def forward(self, q: torch.Tensor, k: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2)
return (
apply_rotary_pos_emb_esm(q, self._cos_cached, self._sin_cached),
apply_rotary_pos_emb_esm(k, self._cos_cached, self._sin_cached),
)
class EvollaSaProtSelfAttention(EsmSelfAttention, nn.Module):
def __init__(self, config, position_embedding_type=None, layer_idx=None):
nn.Module.__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
self.rotary_embeddings = None
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
elif self.position_embedding_type == "rotary":
self.rotary_embeddings = EvollaSaProtRotaryEmbedding(dim=self.attention_head_size)
self.is_decoder = config.is_decoder
self.layer_idx = layer_idx
class EvollaSaProtSelfOutput(EsmSelfOutput):
pass
class EvollaSaProtAttention(EsmAttention):
pass
class EvollaSaProtIntermediate(EsmIntermediate):
pass
class EvollaSaProtOutput(EsmOutput):
pass
class EvollaSaProtLayer(EsmLayer):
pass
class EvollaSaProtEncoder(EsmEncoder):
pass
class EvollaSaProtPooler(EsmPooler):
pass
@auto_docstring
class EvollaSaProtPreTrainedModel(PreTrainedModel):
config: SaProtConfig
_no_split_modules = ["EvollaSaProtLayer"]
_supports_flash_attn = True
def _init_weights(self, module):
"""Initialize the weights"""
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class EvollaSaProtProteinEncoder(EvollaSaProtPreTrainedModel):
def __init__(self, config: SaProtConfig):
super().__init__(config)
self.embeddings = EvollaSaProtEmbeddings(config)
self.encoder = EvollaSaProtEncoder(config)
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@can_return_tuple
def forward(
self,
input_ids: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
input_shape = input_ids.size()
batch_size, seq_length = input_shape
device = input_ids.device
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
inputs_embeds = self.embeddings(input_ids=input_ids, attention_mask=attention_mask)
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
encoder_outputs = self.encoder(inputs_embeds, attention_mask=extended_attention_mask)
sequence_output = encoder_outputs[0]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
def get_extended_attention_mask(
self, attention_mask: Tensor, input_shape: tuple[int], device: torch.device = None, dtype: torch.float = None
) -> Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (`Tuple[int]`):
The shape of the input to the model.
Returns:
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
"""
if dtype is None:
dtype = get_parameter_dtype(self)
if not (attention_mask.dim() == 2 and self.config.is_decoder):
# show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
if device is not None:
warnings.warn(
"The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder:
extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
input_shape, attention_mask, device
)
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
return extended_attention_mask
class EvollaSequenceCompressorAttention(nn.Module):
def __init__(self, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
inner_dim = dim_head * heads
self.norm_media = nn.LayerNorm(dim)
self.norm_latents = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents, mask):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D); n2: num of latent tokens
"""
x = self.norm_media(x)
latents = self.norm_latents(latents)
h = self.heads
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(
2, dim=-1
) # each: batch_size, max_protein_length+num_latents, dim_head*num_heads
q = q.view(q.size(0), q.size(1), h, -1).permute(0, 2, 1, 3)
k = k.view(k.size(0), k.size(1), h, -1).permute(0, 2, 1, 3)
v = v.view(v.size(0), v.size(1), h, -1).permute(0, 2, 1, 3)
q = q * self.scale # batch_size, num_heads, num_latents, dim_head
# attention
sim = torch.matmul(q, k.transpose(-1, -2))
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
bs, nh, skd, okd = sim.shape
ones = torch.ones(nh, skd).to(mask.device) # Create a tensor of ones with shape (nh, skd)
mask_exp = mask[:, None, None, :]
ones_exp = ones[None, :, :, None]
mask = mask_exp * ones_exp
sim = sim.masked_fill((1 - mask).bool(), -1e4)
attn = sim.softmax(dim=-1)
out = torch.matmul(attn, v)
out = out.permute(0, 2, 1, 3)
# [batch, seq, head, features] -> [batch, seq, head*features]
out = out.reshape(out.size(0), out.size(1), -1)
return self.to_out(out)
class EvollaFeedForward(nn.Module):
def __init__(self, dim, mult=4):
super().__init__()
inner_dim = int(dim * mult)
self.norm = nn.LayerNorm(dim)
self.fc1 = nn.Linear(dim, inner_dim, bias=False)
self.activation = nn.GELU()
self.fc2 = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x):
return self.fc2(self.activation(self.fc1(self.norm(x))))
class EvollaSequenceCompressorResampler(nn.Module):
def __init__(self, config: EvollaConfig):
super().__init__()
protein_repr_dim = config.protein_encoder_config.hidden_size
self.num_latents = config.resampler_num_latents
self.latents = nn.Parameter(torch.randn(self.num_latents, protein_repr_dim), requires_grad=True)
self.layers = nn.ModuleList([])
for _ in range(config.resampler_depth):
self.layers.append(
nn.ModuleList(
[
EvollaSequenceCompressorAttention(
dim=protein_repr_dim, dim_head=config.resampler_dim_head, heads=config.resampler_heads
),
EvollaFeedForward(dim=protein_repr_dim, mult=config.resampler_ff_mult),
]
)
)
self.norm = nn.LayerNorm(config.hidden_size)
self.protein_projector = nn.Linear(protein_repr_dim, config.hidden_size)
def forward(self, embeds, mask):
b = embeds.shape[0]
bs, _ = mask.shape # bs, max_protein_length
latent_mask = torch.ones(bs, self.num_latents).to(mask.device)
mask = torch.cat((mask, latent_mask), dim=1) # bs, max_protein_length + num_latents
# blocks
ones = torch.ones(b).to(self.latents.device)
latents = self.latents[None] * ones.view(-1, 1, 1) # [b,n,d]
latents = latents.to(embeds.dtype)
for attn, ff in self.layers:
latents = attn(embeds, latents, mask) + latents
latents = ff(latents) + latents
transformed_feature = self.protein_projector(latents)
return self.norm(transformed_feature)
@dataclass
@auto_docstring
class EvollaProteinEncoderModelOutput(ModelOutput):
sequence_compressor_output: torch.FloatTensor = None
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
class EvollaProteinEncoder(nn.Module):
def __init__(self, config: EvollaConfig):
super().__init__()
self.model = EvollaSaProtProteinEncoder(config=config.protein_encoder_config)
self.sequence_compressor_resampler = EvollaSequenceCompressorResampler(config=config)
@can_return_tuple
def forward(self, input_ids: torch.LongTensor, attention_mask: torch.FloatTensor, **kwargs):
protein_output = self.model(input_ids=input_ids, attention_mask=attention_mask)
protein_embeds = protein_output.last_hidden_state
sequence_repr = self.sequence_compressor_resampler(protein_embeds, attention_mask)
return EvollaProteinEncoderModelOutput(
sequence_compressor_output=sequence_repr,
last_hidden_state=protein_output.last_hidden_state,
)
class EvollaSequenceAlignerCrossAttention(nn.Module):
def __init__(
self,
config,
protein_encoder_dim: Optional[int] = None,
structure_encoder_dim: Optional[int] = None,
msa_encoder_dim: Optional[int] = None,
):
super().__init__()
self.hidden_size = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.scale = self.num_attention_heads**-0.5
self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
attention_probs_dropout_prob = config.aligner_attention_probs_dropout_prob
enable_bias = config.aligner_enable_bias
ffn_mult = config.aligner_ffn_mult
self.query = nn.Linear(self.hidden_size, self.all_head_size)
if protein_encoder_dim is not None:
self.key_protein = nn.Linear(protein_encoder_dim, self.all_head_size)
self.value_protein = nn.Linear(protein_encoder_dim, self.all_head_size)
else:
self.key_protein = None
self.value_protein = None
if structure_encoder_dim is not None:
self.key_structure = nn.Linear(structure_encoder_dim, self.all_head_size)
self.value_structure = nn.Linear(structure_encoder_dim, self.all_head_size)
else:
self.key_structure = None
self.value_structure = None
if msa_encoder_dim is not None:
self.key_msa = nn.Linear(msa_encoder_dim, self.all_head_size)
self.value_msa = nn.Linear(msa_encoder_dim, self.all_head_size)
else:
self.key_msa = None
self.value_msa = None
self.attention_norm = EvollaRMSNorm(self.hidden_size)
self.dropout = nn.Dropout(attention_probs_dropout_prob)
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=enable_bias)
self.ff = EvollaFeedForward(self.hidden_size, ffn_mult)
self.gate_attention = nn.Parameter(torch.tensor([0.0]))
self.gate_ffw = nn.Parameter(torch.tensor([0.0]))
def cross_attention(
self,
query_states,
protein_key_value_states,
structure_key_value_states,
msa_key_value_states,
query_attn_mask,
protein_kv_attn_mask,
structure_kv_attn_mask,
msa_kv_attn_mask,
):
"""
query_states: text
key_value_states: protein
query_states: [bs, query_seq_len, dim]
key_value_states: [bs, kv_seq_len, dim]
query_attn_mask: [bs, query_seq_len]
kv_attn_mask: [bs, kv_seq_len]
"""
# Concatenate protein and structure
kv_attn_mask = [protein_kv_attn_mask, structure_kv_attn_mask, msa_kv_attn_mask]
kv_attn_mask = [_ for _ in kv_attn_mask if _ is not None]
if not kv_attn_mask:
raise ValueError("At least one modality should be provided for cross attention.")
kv_attn_mask = torch.cat(kv_attn_mask, dim=1)
query_layer = self.attention_norm(query_states)
# Warning: This place might cause issues, refers to
# https://discuss.pytorch.org/t/cuda-error-cublas-status-not-supported-when-calling-cublasltmatmul-from-torch-nn-functional-linear/170214/13
# Solution: add `DISABLE_ADDMM_CUDA_LT=1` as environment variable
# Apply linear transformation to input_query, input_key, and input_value
query_layer = self.query(query_layer) # [bs, querylength, dim]
if self.key_protein is not None and self.value_protein is not None:
protein_key_value_states = protein_key_value_states.to(query_states)
key_layer_protein = self.key_protein(protein_key_value_states) # [bs, keylength, dim]
value_layer_protein = self.value_protein(protein_key_value_states) # [bs, keylength, dim]
else:
key_layer_protein = None
value_layer_protein = None
if self.key_structure is not None and self.value_structure is not None:
structure_key_value_states = structure_key_value_states.to(query_states)
key_layer_structure = self.key_structure(structure_key_value_states) # [bs, keylength, dim]
value_layer_structure = self.value_structure(structure_key_value_states) # [bs, keylength, dim]
else:
key_layer_structure = None
value_layer_structure = None
if self.key_msa is not None and self.value_msa is not None:
msa_key_value_states = msa_key_value_states.to(query_states)
key_layer_msa = self.key_msa(msa_key_value_states) # [bs, keylength, dim]
value_layer_msa = self.value_msa(msa_key_value_states) # [bs, keylength, dim]
else:
key_layer_msa = None
value_layer_msa = None
key_layer = [key_layer_protein, key_layer_structure, key_layer_msa]
key_layer = [_ for _ in key_layer if _ is not None]
key_layer = torch.cat(key_layer, dim=1)
value_layer = [value_layer_protein, value_layer_structure, value_layer_msa]
value_layer = [_ for _ in value_layer if _ is not None]
value_layer = torch.cat(value_layer, dim=1)
new_query_layer_shape = query_layer.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
query_layer = query_layer.view(*new_query_layer_shape).permute(0, 2, 1, 3)
new_key_layer_shape = key_layer.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
key_layer = key_layer.view(*new_key_layer_shape).permute(0, 2, 1, 3)
new_value_layer_shape = value_layer.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
value_layer = value_layer.view(*new_value_layer_shape).permute(0, 2, 1, 3)
query_layer = query_layer * self.scale
# attention_mask: [bs, 1, querylength, keylength]
if query_attn_mask is None:
query_attn_mask = torch.ones(query_states.size(0), query_states.size(1)).to(query_states.device)
attention_mask = query_attn_mask[:, None, :, None] * kv_attn_mask[:, None, None, :]
# Compute the scaled dot-product attention scores
attn_weights = torch.matmul(query_layer, key_layer.transpose(-1, -2)) # [bs, numheads, querylength, keylength]
attn_weights = attn_weights - attn_weights.amax(dim=-1, keepdim=True).detach() # To stablize score
attention_scores = attn_weights.masked_fill(
(1 - attention_mask).bool(), torch.finfo(attn_weights.dtype).min
) # [bs, numheads, querylength, keylength]
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# attention_probs_dropped = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer) # [bs, numheads, querylength, dim/numheads]
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
context_layer = self.out_proj(context_layer)
return context_layer
def forward(
self,
query_states,
protein_kv_states,
structure_kv_states,
msa_kv_states,
query_attn_mask,
protein_kv_attn_mask=None,
structure_kv_attn_mask=None,
msa_kv_attn_mask=None,
protein_batch_mask=None,
structure_batch_mask=None,
msa_batch_mask=None,
past_key_value=None,
):
if protein_kv_states is not None:
bs, protein_kv_seq_len, dim = protein_kv_states.shape
if protein_kv_attn_mask is None:
protein_kv_attn_mask = (
torch.ones(bs, protein_kv_seq_len).to(protein_batch_mask.device)
* protein_batch_mask.expand(size=(protein_kv_seq_len, bs)).T
).to(protein_kv_states.device)
else:
protein_kv_attn_mask = None
if structure_kv_states is not None:
bs, structure_kv_seq_len, dim = structure_kv_states.shape
if structure_kv_attn_mask is None:
structure_kv_attn_mask = (
torch.ones(bs, structure_kv_seq_len).to(protein_batch_mask.device)
* structure_batch_mask.expand(size=(structure_kv_seq_len, bs)).T
).to(structure_kv_states.device)
else:
structure_kv_attn_mask = None
if msa_kv_states is not None:
bs, msa_kv_seq_len, dim = msa_kv_states.shape
if msa_kv_attn_mask is None:
msa_kv_attn_mask = (
torch.ones(bs, msa_kv_seq_len).to(protein_batch_mask.device)
* msa_batch_mask.expand(size=(msa_kv_seq_len, bs)).T
).to(msa_kv_states.device)
else:
msa_kv_attn_mask = None
hidden_states = query_states
# only when there's at least one valid modality, crossattention will be performed
if (
(protein_kv_states is not None and protein_kv_attn_mask.any())
or (structure_kv_states is not None and structure_kv_attn_mask.any())
or (msa_kv_states is not None and msa_kv_attn_mask.any())
):
residual = hidden_states
hidden_states = self.cross_attention(
query_states=hidden_states,
protein_key_value_states=protein_kv_states,
structure_key_value_states=structure_kv_states,
msa_key_value_states=msa_kv_states,
query_attn_mask=query_attn_mask,
protein_kv_attn_mask=protein_kv_attn_mask,
structure_kv_attn_mask=structure_kv_attn_mask,
msa_kv_attn_mask=msa_kv_attn_mask,
) # [bs, query_seq_len, dim]
# tanh gate
hidden_states = torch.tanh(self.gate_attention) * hidden_states
hidden_states = residual + hidden_states # input_query
residual = hidden_states
hidden_states = self.ff(hidden_states) * torch.tanh(self.gate_ffw)
hidden_states = residual + hidden_states
return hidden_states
class EvollaRMSNorm(LlamaRMSNorm):
pass
class EvollaRotaryEmbedding(LlamaRotaryEmbedding):
pass
class EvollaMLP(LlamaMLP):
pass
class EvollaAttention(LlamaAttention):
pass
class EvollaDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: EvollaConfig, layer_idx: int):
super().__init__(config, layer_idx)
if (layer_idx + 1) % max(config.num_hidden_layers // config.aligner_num_add_layers, 1) == 0:
self.adapter = EvollaSequenceAlignerCrossAttention(
config,
protein_encoder_dim=config.hidden_size,
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
protein_kv_states: Optional[torch.Tensor] = None,
structure_kv_states: Optional[torch.Tensor] = None,
msa_kv_states: Optional[torch.Tensor] = None,
protein_batch_mask: Optional[torch.Tensor] = None,
structure_batch_mask: Optional[torch.Tensor] = None,
msa_batch_mask: Optional[torch.Tensor] = None,
query_attn_mask: Optional[torch.Tensor] = None,
**kwargs,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
if hasattr(self, "adapter"):
hidden_states = self.adapter(
query_states=hidden_states,
protein_kv_states=protein_kv_states,
structure_kv_states=structure_kv_states,
msa_kv_states=msa_kv_states,
query_attn_mask=query_attn_mask,
protein_batch_mask=protein_batch_mask,
structure_batch_mask=structure_batch_mask,
msa_batch_mask=msa_batch_mask,
)
return hidden_states
class EvollaPreTrainedModel(LlamaPreTrainedModel):
_supports_attention_backend = False
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, EvollaRMSNorm):
module.weight.data.fill_(1.0)
elif isinstance(module, EvollaSequenceAlignerCrossAttention):
module.gate_attention.zero_()
module.gate_ffw.zero_()
module.attention_norm.weight.data.fill_(1.0)
elif isinstance(module, EvollaSequenceCompressorResampler):
module.latents.data.normal_(mean=0.0, std=std)
class EvollaModel(EvollaPreTrainedModel):
def __init__(self, config: EvollaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(self.vocab_size, config.hidden_size, self.padding_idx)
self.protein_encoder = EvollaProteinEncoder(config=config)
self.layers = nn.ModuleList(
[
EvollaDecoderLayer(
config=config,
layer_idx=layer_idx,
)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = EvollaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = EvollaRotaryEmbedding(config=config)
self.gradient_checkpointing = getattr(config, "gradient_checkpointing", False)
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@auto_docstring
@check_model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
protein_input_ids: Optional[torch.LongTensor] = None,
protein_attention_mask: Optional[torch.Tensor] = None,
structure_feats: Optional[torch.FloatTensor] = None,
msa_feats: Optional[torch.FloatTensor] = None,
structure_batch_mask: Optional[torch.Tensor] = None,
msa_batch_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[tuple, BaseModelOutputWithPast]:
r"""
protein_input_ids (torch.LongTensor):
The input IDs for the protein sequence in structure-aware tokens. Should be of shape `(batch_size, protein_seq_length)` and type `torch.LongTensor`.
protein_attention_mask (torch.Tensor):
The attention mask for the protein sequence. Should be of shape `(batch_size, protein_seq_length)` and type `torch.Tensor`.
structure_feats (torch.FloatTensor):
The input IDs for purely structure-based features. Should be of shape `(batch_size, structure_seq_length, structure_feat_dim)` and type `torch.FloatTensor`. Dummy input for now.
msa_feats (torch.FloatTensor):
The input IDs for purely MSA-based features. Should be of shape `(batch_size, msa_seq_length, msa_feat_dim)` and type `torch.FloatTensor`. Dummy input for now.
structure_batch_mask (torch.Tensor):
The batch mask to decide which protein sequences are purely structure-based. Should be of shape `(batch_size)` and type `torch.Tensor`. Should be paired with `structure_feats`. Dummpy input for now.
msa_batch_mask (torch.Tensor):
The batch mask to decide which protein sequences are purely MSA-based. Should be of shape `(batch_size)` and type `torch.Tensor`. Should be paired with `msa_feats`. Dummpy input for now.
"""
# If not provided `protein_feats`, use the `protein_encoder` to get the protein features
if protein_input_ids is not None and protein_attention_mask is not None:
protein_outputs = self.protein_encoder(
input_ids=protein_input_ids,
attention_mask=protein_attention_mask,
)
protein_feats = protein_outputs.sequence_compressor_output
protein_batch_mask = torch.tensor([True] * protein_input_ids.shape[0], device=protein_input_ids.device)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for decoder_layer in self.layers:
hidden_states = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
protein_kv_states=protein_feats,
structure_kv_states=structure_feats,
msa_kv_states=msa_feats,
protein_batch_mask=protein_batch_mask,
structure_batch_mask=structure_batch_mask,
msa_batch_mask=msa_batch_mask,
query_attn_mask=attention_mask,
**kwargs,
)
hidden_states = self.norm(hidden_states)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
)
return output
class EvollaForProteinText2Text(EvollaPreTrainedModel, GenerationMixin):
def __init__(self, config):
super().__init__(config)
self.model = EvollaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, self.vocab_size, bias=False)
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
return self.model.set_input_embeddings(value)
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: torch.LongTensor = None, # text input ids
attention_mask: Optional[torch.Tensor] = None, # text attention mask
inputs_embeds: Optional[torch.FloatTensor] = None, # text input embeddings
labels: Optional[torch.LongTensor] = None,
protein_input_ids: torch.LongTensor = None,
protein_attention_mask: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
**kwargs,
):
r"""
protein_input_ids (torch.LongTensor):
The input IDs for the protein sequence. Should be of shape `(batch_size, protein_seq_length)` and type `torch.LongTensor`.
protein_attention_mask (torch.Tensor):
The attention mask for the protein sequence. Should be of shape `(batch_size, protein_seq_length)` and type `torch.Tensor`.
Example:
```python
>>> from transformers import EvollaProcessor, EvollaForProteinText2Text
>>> model = EvollaForProteinText2Text.from_pretrained("westlake/Evolla-10B-hf")
>>> processor = EvollaProcessor.from_pretrained("westlake/Evolla-10B-hf")
>>> protein_information = {
"aa_seq": "your amino acid sequence",
"foldseek": "your foldseek sequence",
}
>>> question = "What is the function of this protein?"
>>> message = [
{"role": "system", "content": "You are an AI expert that can answer any questions about protein."},
{"role": "user", "content": question},
]
>>> inputs = processor(proteins=[protein_information], messages_list=[message], return_tensors="pt", padding="longest")
>>> outputs = model.generate(**inputs)
>>> print(processor.batch_decode(outputs, skip_special_tokens=True))
```"""
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
protein_input_ids=protein_input_ids,
protein_attention_mask=protein_attention_mask,
use_cache=use_cache,
**kwargs,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **kwargs)
lm_outputs = CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
return lm_outputs
__all__ = ["EvollaForProteinText2Text", "EvollaModel", "EvollaPreTrainedModel"]