team-10/venv/Lib/site-packages/transformers/models/helium/modular_helium.py
2025-08-02 02:00:33 +02:00

150 lines
5.4 KiB
Python

# coding=utf-8
# Copyright 2024 The Kyutai and HuggingFace Inc. teams. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.utils.checkpoint
from ...utils import logging
from ..gemma.modeling_gemma import GemmaForCausalLM, GemmaForSequenceClassification, GemmaForTokenClassification
from ..granite.modeling_granite import GraniteAttention
from ..llama.modeling_llama import LlamaDecoderLayer, LlamaMLP, LlamaModel, LlamaPreTrainedModel, LlamaRotaryEmbedding
from .configuration_helium import HeliumConfig
logger = logging.get_logger(__name__)
class HeliumRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return (self.weight.to(torch.float32) * hidden_states).to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class HeliumRotaryEmbedding(LlamaRotaryEmbedding):
pass
class HeliumMLP(LlamaMLP):
pass
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., 0::2]
x2 = x[..., 1::2]
return torch.stack((-x2, x1), dim=-1).flatten(-2)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
# Interleave them instead of usual shape
cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1)
sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class HeliumAttention(GraniteAttention):
def __init__(self, config: HeliumConfig, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
self.scaling = 1 / math.sqrt(self.head_dim)
class HeliumDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: HeliumConfig, layer_idx: Optional[int] = None):
super().__init__()
self.mlp = HeliumMLP(config)
self.input_layernorm = HeliumRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = HeliumRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
class HeliumPreTrainedModel(LlamaPreTrainedModel):
pass
class HeliumModel(HeliumPreTrainedModel, LlamaModel):
def __init__(self, config: HeliumConfig):
super().__init__(config)
self.layers = nn.ModuleList(
[HeliumDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = HeliumRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = HeliumRotaryEmbedding(config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
class HeliumForCausalLM(GemmaForCausalLM):
pass
class HeliumForSequenceClassification(GemmaForSequenceClassification):
pass
class HeliumForTokenClassification(GemmaForTokenClassification):
pass
__all__ = [
"HeliumPreTrainedModel",
"HeliumModel",
"HeliumForCausalLM",
"HeliumForSequenceClassification",
"HeliumForTokenClassification",
]