team-10/env/Lib/site-packages/narwhals/_arrow/utils.py
2025-08-02 07:34:44 +02:00

443 lines
16 KiB
Python

from __future__ import annotations
from functools import lru_cache
from typing import TYPE_CHECKING, Any, cast
import pyarrow as pa
import pyarrow.compute as pc
from narwhals._compliant import EagerSeriesNamespace
from narwhals._utils import isinstance_or_issubclass
if TYPE_CHECKING:
from collections.abc import Iterable, Iterator, Mapping
from typing_extensions import TypeAlias, TypeIs
from narwhals._arrow.series import ArrowSeries
from narwhals._arrow.typing import (
ArrayAny,
ArrayOrScalar,
ArrayOrScalarT1,
ArrayOrScalarT2,
ChunkedArrayAny,
NativeIntervalUnit,
ScalarAny,
)
from narwhals._duration import IntervalUnit
from narwhals._utils import Version
from narwhals.dtypes import DType
from narwhals.typing import IntoDType, PythonLiteral
# NOTE: stubs don't allow for `ChunkedArray[StructArray]`
# Intended to represent the `.chunks` property storing `list[pa.StructArray]`
ChunkedArrayStructArray: TypeAlias = ChunkedArrayAny
def is_timestamp(t: Any) -> TypeIs[pa.TimestampType[Any, Any]]: ...
def is_duration(t: Any) -> TypeIs[pa.DurationType[Any]]: ...
def is_list(t: Any) -> TypeIs[pa.ListType[Any]]: ...
def is_large_list(t: Any) -> TypeIs[pa.LargeListType[Any]]: ...
def is_fixed_size_list(t: Any) -> TypeIs[pa.FixedSizeListType[Any, Any]]: ...
def is_dictionary(t: Any) -> TypeIs[pa.DictionaryType[Any, Any, Any]]: ...
def extract_regex(
strings: ChunkedArrayAny,
/,
pattern: str,
*,
options: Any = None,
memory_pool: Any = None,
) -> ChunkedArrayStructArray: ...
else:
from pyarrow.compute import extract_regex
from pyarrow.types import (
is_dictionary, # noqa: F401
is_duration,
is_fixed_size_list,
is_large_list,
is_list,
is_timestamp,
)
UNITS_DICT: Mapping[IntervalUnit, NativeIntervalUnit] = {
"y": "year",
"q": "quarter",
"mo": "month",
"d": "day",
"h": "hour",
"m": "minute",
"s": "second",
"ms": "millisecond",
"us": "microsecond",
"ns": "nanosecond",
}
lit = pa.scalar
"""Alias for `pyarrow.scalar`."""
def extract_py_scalar(value: Any, /) -> Any:
from narwhals._arrow.series import maybe_extract_py_scalar
return maybe_extract_py_scalar(value, return_py_scalar=True)
def chunked_array(
arr: ArrayOrScalar | list[Iterable[Any]], dtype: pa.DataType | None = None, /
) -> ChunkedArrayAny:
if isinstance(arr, pa.ChunkedArray):
return arr
if isinstance(arr, list):
return pa.chunked_array(arr, dtype)
else:
return pa.chunked_array([arr], arr.type)
def nulls_like(n: int, series: ArrowSeries) -> ArrayAny:
"""Create a strongly-typed Array instance with all elements null.
Uses the type of `series`, without upseting `mypy`.
"""
return pa.nulls(n, series.native.type)
def zeros(n: int, /) -> pa.Int64Array:
return pa.repeat(0, n)
@lru_cache(maxsize=16)
def native_to_narwhals_dtype(dtype: pa.DataType, version: Version) -> DType: # noqa: C901, PLR0912
dtypes = version.dtypes
if pa.types.is_int64(dtype):
return dtypes.Int64()
if pa.types.is_int32(dtype):
return dtypes.Int32()
if pa.types.is_int16(dtype):
return dtypes.Int16()
if pa.types.is_int8(dtype):
return dtypes.Int8()
if pa.types.is_uint64(dtype):
return dtypes.UInt64()
if pa.types.is_uint32(dtype):
return dtypes.UInt32()
if pa.types.is_uint16(dtype):
return dtypes.UInt16()
if pa.types.is_uint8(dtype):
return dtypes.UInt8()
if pa.types.is_boolean(dtype):
return dtypes.Boolean()
if pa.types.is_float64(dtype):
return dtypes.Float64()
if pa.types.is_float32(dtype):
return dtypes.Float32()
# bug in coverage? it shows `31->exit` (where `31` is currently the line number of
# the next line), even though both when the if condition is true and false are covered
if ( # pragma: no cover
pa.types.is_string(dtype)
or pa.types.is_large_string(dtype)
or getattr(pa.types, "is_string_view", lambda _: False)(dtype)
):
return dtypes.String()
if pa.types.is_date32(dtype):
return dtypes.Date()
if is_timestamp(dtype):
return dtypes.Datetime(time_unit=dtype.unit, time_zone=dtype.tz)
if is_duration(dtype):
return dtypes.Duration(time_unit=dtype.unit)
if pa.types.is_dictionary(dtype):
return dtypes.Categorical()
if pa.types.is_struct(dtype):
return dtypes.Struct(
[
dtypes.Field(
dtype.field(i).name,
native_to_narwhals_dtype(dtype.field(i).type, version),
)
for i in range(dtype.num_fields)
]
)
if is_list(dtype) or is_large_list(dtype):
return dtypes.List(native_to_narwhals_dtype(dtype.value_type, version))
if is_fixed_size_list(dtype):
return dtypes.Array(
native_to_narwhals_dtype(dtype.value_type, version), dtype.list_size
)
if pa.types.is_decimal(dtype):
return dtypes.Decimal()
if pa.types.is_time32(dtype) or pa.types.is_time64(dtype):
return dtypes.Time()
if pa.types.is_binary(dtype):
return dtypes.Binary()
return dtypes.Unknown() # pragma: no cover
def narwhals_to_native_dtype(dtype: IntoDType, version: Version) -> pa.DataType: # noqa: C901, PLR0912
dtypes = version.dtypes
if isinstance_or_issubclass(dtype, dtypes.Decimal):
msg = "Casting to Decimal is not supported yet."
raise NotImplementedError(msg)
if isinstance_or_issubclass(dtype, dtypes.Float64):
return pa.float64()
if isinstance_or_issubclass(dtype, dtypes.Float32):
return pa.float32()
if isinstance_or_issubclass(dtype, dtypes.Int64):
return pa.int64()
if isinstance_or_issubclass(dtype, dtypes.Int32):
return pa.int32()
if isinstance_or_issubclass(dtype, dtypes.Int16):
return pa.int16()
if isinstance_or_issubclass(dtype, dtypes.Int8):
return pa.int8()
if isinstance_or_issubclass(dtype, dtypes.UInt64):
return pa.uint64()
if isinstance_or_issubclass(dtype, dtypes.UInt32):
return pa.uint32()
if isinstance_or_issubclass(dtype, dtypes.UInt16):
return pa.uint16()
if isinstance_or_issubclass(dtype, dtypes.UInt8):
return pa.uint8()
if isinstance_or_issubclass(dtype, dtypes.String):
return pa.string()
if isinstance_or_issubclass(dtype, dtypes.Boolean):
return pa.bool_()
if isinstance_or_issubclass(dtype, dtypes.Categorical):
return pa.dictionary(pa.uint32(), pa.string())
if isinstance_or_issubclass(dtype, dtypes.Datetime):
unit = dtype.time_unit
return pa.timestamp(unit, tz) if (tz := dtype.time_zone) else pa.timestamp(unit)
if isinstance_or_issubclass(dtype, dtypes.Duration):
return pa.duration(dtype.time_unit)
if isinstance_or_issubclass(dtype, dtypes.Date):
return pa.date32()
if isinstance_or_issubclass(dtype, dtypes.List):
return pa.list_(value_type=narwhals_to_native_dtype(dtype.inner, version=version))
if isinstance_or_issubclass(dtype, dtypes.Struct):
return pa.struct(
[
(field.name, narwhals_to_native_dtype(field.dtype, version=version))
for field in dtype.fields
]
)
if isinstance_or_issubclass(dtype, dtypes.Array): # pragma: no cover
inner = narwhals_to_native_dtype(dtype.inner, version=version)
list_size = dtype.size
return pa.list_(inner, list_size=list_size)
if isinstance_or_issubclass(dtype, dtypes.Time):
return pa.time64("ns")
if isinstance_or_issubclass(dtype, dtypes.Binary):
return pa.binary()
msg = f"Unknown dtype: {dtype}" # pragma: no cover
raise AssertionError(msg)
def extract_native(
lhs: ArrowSeries, rhs: ArrowSeries | PythonLiteral | ScalarAny
) -> tuple[ChunkedArrayAny | ScalarAny, ChunkedArrayAny | ScalarAny]:
"""Extract native objects in binary operation.
If the comparison isn't supported, return `NotImplemented` so that the
"right-hand-side" operation (e.g. `__radd__`) can be tried.
If one of the two sides has a `_broadcast` flag, then extract the scalar
underneath it so that PyArrow can do its own broadcasting.
"""
from narwhals._arrow.series import ArrowSeries
if rhs is None: # pragma: no cover
return lhs.native, lit(None, type=lhs._type)
if isinstance(rhs, ArrowSeries):
if lhs._broadcast and not rhs._broadcast:
return lhs.native[0], rhs.native
if rhs._broadcast:
return lhs.native, rhs.native[0]
return lhs.native, rhs.native
if isinstance(rhs, list):
msg = "Expected Series or scalar, got list."
raise TypeError(msg)
return lhs.native, rhs if isinstance(rhs, pa.Scalar) else lit(rhs)
def floordiv_compat(left: ArrayOrScalar, right: ArrayOrScalar, /) -> Any:
# The following lines are adapted from pandas' pyarrow implementation.
# Ref: https://github.com/pandas-dev/pandas/blob/262fcfbffcee5c3116e86a951d8b693f90411e68/pandas/core/arrays/arrow/array.py#L124-L154
if pa.types.is_integer(left.type) and pa.types.is_integer(right.type):
divided = pc.divide_checked(left, right)
# TODO @dangotbanned: Use a `TypeVar` in guards
# Narrowing to a `Union` isn't interacting well with the rest of the stubs
# https://github.com/zen-xu/pyarrow-stubs/pull/215
if pa.types.is_signed_integer(divided.type):
div_type = cast("pa._lib.Int64Type", divided.type)
has_remainder = pc.not_equal(pc.multiply(divided, right), left)
has_one_negative_operand = pc.less(
pc.bit_wise_xor(left, right), lit(0, div_type)
)
result = pc.if_else(
pc.and_(has_remainder, has_one_negative_operand),
pc.subtract(divided, lit(1, div_type)),
divided,
)
else:
result = divided # pragma: no cover
result = result.cast(left.type)
else:
divided = pc.divide(left, right)
result = pc.floor(divided)
return result
def cast_for_truediv(
arrow_array: ArrayOrScalarT1, pa_object: ArrayOrScalarT2
) -> tuple[ArrayOrScalarT1, ArrayOrScalarT2]:
# Lifted from:
# https://github.com/pandas-dev/pandas/blob/262fcfbffcee5c3116e86a951d8b693f90411e68/pandas/core/arrays/arrow/array.py#L108-L122
# Ensure int / int -> float mirroring Python/Numpy behavior
# as pc.divide_checked(int, int) -> int
if pa.types.is_integer(arrow_array.type) and pa.types.is_integer(pa_object.type):
# GH: 56645. # noqa: ERA001
# https://github.com/apache/arrow/issues/35563
return arrow_array.cast(pa.float64(), safe=False), pa_object.cast(
pa.float64(), safe=False
)
return arrow_array, pa_object
# Regex for date, time, separator and timezone components
DATE_RE = r"(?P<date>\d{1,4}[-/.]\d{1,2}[-/.]\d{1,4}|\d{8})"
SEP_RE = r"(?P<sep>\s|T)"
TIME_RE = r"(?P<time>\d{2}:\d{2}(?::\d{2})?|\d{6}?)" # \s*(?P<period>[AP]M)?)?
HMS_RE = r"^(?P<hms>\d{2}:\d{2}:\d{2})$"
HM_RE = r"^(?P<hm>\d{2}:\d{2})$"
HMS_RE_NO_SEP = r"^(?P<hms_no_sep>\d{6})$"
TZ_RE = r"(?P<tz>Z|[+-]\d{2}:?\d{2})" # Matches 'Z', '+02:00', '+0200', '+02', etc.
FULL_RE = rf"{DATE_RE}{SEP_RE}?{TIME_RE}?{TZ_RE}?$"
# Separate regexes for different date formats
YMD_RE = r"^(?P<year>(?:[12][0-9])?[0-9]{2})(?P<sep1>[-/.])(?P<month>0[1-9]|1[0-2])(?P<sep2>[-/.])(?P<day>0[1-9]|[12][0-9]|3[01])$"
DMY_RE = r"^(?P<day>0[1-9]|[12][0-9]|3[01])(?P<sep1>[-/.])(?P<month>0[1-9]|1[0-2])(?P<sep2>[-/.])(?P<year>(?:[12][0-9])?[0-9]{2})$"
MDY_RE = r"^(?P<month>0[1-9]|1[0-2])(?P<sep1>[-/.])(?P<day>0[1-9]|[12][0-9]|3[01])(?P<sep2>[-/.])(?P<year>(?:[12][0-9])?[0-9]{2})$"
YMD_RE_NO_SEP = r"^(?P<year>(?:[12][0-9])?[0-9]{2})(?P<month>0[1-9]|1[0-2])(?P<day>0[1-9]|[12][0-9]|3[01])$"
DATE_FORMATS = (
(YMD_RE_NO_SEP, "%Y%m%d"),
(YMD_RE, "%Y-%m-%d"),
(DMY_RE, "%d-%m-%Y"),
(MDY_RE, "%m-%d-%Y"),
)
TIME_FORMATS = ((HMS_RE, "%H:%M:%S"), (HM_RE, "%H:%M"), (HMS_RE_NO_SEP, "%H%M%S"))
def _extract_regex_concat_arrays(
strings: ChunkedArrayAny,
/,
pattern: str,
*,
options: Any = None,
memory_pool: Any = None,
) -> pa.StructArray:
r = pa.concat_arrays(
extract_regex(strings, pattern, options=options, memory_pool=memory_pool).chunks
)
return cast("pa.StructArray", r)
def parse_datetime_format(arr: ChunkedArrayAny) -> str:
"""Try to infer datetime format from StringArray."""
matches = _extract_regex_concat_arrays(arr.drop_null().slice(0, 10), pattern=FULL_RE)
if not pc.all(matches.is_valid()).as_py():
msg = (
"Unable to infer datetime format, provided format is not supported. "
"Please report a bug to https://github.com/narwhals-dev/narwhals/issues"
)
raise NotImplementedError(msg)
separators = matches.field("sep")
tz = matches.field("tz")
# separators and time zones must be unique
if pc.count(pc.unique(separators)).as_py() > 1:
msg = "Found multiple separator values while inferring datetime format."
raise ValueError(msg)
if pc.count(pc.unique(tz)).as_py() > 1:
msg = "Found multiple timezone values while inferring datetime format."
raise ValueError(msg)
date_value = _parse_date_format(cast("pc.StringArray", matches.field("date")))
time_value = _parse_time_format(cast("pc.StringArray", matches.field("time")))
sep_value = separators[0].as_py()
tz_value = "%z" if tz[0].as_py() else ""
return f"{date_value}{sep_value}{time_value}{tz_value}"
def _parse_date_format(arr: pc.StringArray) -> str:
for date_rgx, date_fmt in DATE_FORMATS:
matches = pc.extract_regex(arr, pattern=date_rgx)
if date_fmt == "%Y%m%d" and pc.all(matches.is_valid()).as_py():
return date_fmt
elif (
pc.all(matches.is_valid()).as_py()
and pc.count(pc.unique(sep1 := matches.field("sep1"))).as_py() == 1
and pc.count(pc.unique(sep2 := matches.field("sep2"))).as_py() == 1
and (date_sep_value := sep1[0].as_py()) == sep2[0].as_py()
):
return date_fmt.replace("-", date_sep_value)
msg = (
"Unable to infer datetime format. "
"Please report a bug to https://github.com/narwhals-dev/narwhals/issues"
)
raise ValueError(msg)
def _parse_time_format(arr: pc.StringArray) -> str:
for time_rgx, time_fmt in TIME_FORMATS:
matches = pc.extract_regex(arr, pattern=time_rgx)
if pc.all(matches.is_valid()).as_py():
return time_fmt
return ""
def pad_series(
series: ArrowSeries, *, window_size: int, center: bool
) -> tuple[ArrowSeries, int]:
"""Pad series with None values on the left and/or right side, depending on the specified parameters.
Arguments:
series: The input ArrowSeries to be padded.
window_size: The desired size of the window.
center: Specifies whether to center the padding or not.
Returns:
A tuple containing the padded ArrowSeries and the offset value.
"""
if not center:
return series, 0
offset_left = window_size // 2
# subtract one if window_size is even
offset_right = offset_left - (window_size % 2 == 0)
pad_left = pa.array([None] * offset_left, type=series._type)
pad_right = pa.array([None] * offset_right, type=series._type)
concat = pa.concat_arrays([pad_left, *series.native.chunks, pad_right])
return series._with_native(concat), offset_left + offset_right
def cast_to_comparable_string_types(
*chunked_arrays: ChunkedArrayAny, separator: str
) -> tuple[Iterator[ChunkedArrayAny], ScalarAny]:
# Ensure `chunked_arrays` are either all `string` or all `large_string`.
dtype = (
pa.string() # (PyArrow default)
if not any(pa.types.is_large_string(ca.type) for ca in chunked_arrays)
else pa.large_string()
)
return (ca.cast(dtype) for ca in chunked_arrays), lit(separator, dtype)
class ArrowSeriesNamespace(EagerSeriesNamespace["ArrowSeries", "ChunkedArrayAny"]): ...