team-10/env/Lib/site-packages/scipy/ndimage/tests/test_morphology.py
2025-08-02 07:34:44 +02:00

2950 lines
128 KiB
Python

import numpy as np
from scipy._lib._array_api import (
is_cupy, is_numpy,
xp_assert_close, xp_assert_equal, assert_array_almost_equal
)
import pytest
from pytest import raises as assert_raises
from scipy import ndimage
from . import types
skip_xp_backends = pytest.mark.skip_xp_backends
xfail_xp_backends = pytest.mark.xfail_xp_backends
pytestmark = [skip_xp_backends(cpu_only=True, exceptions=['cupy', 'jax.numpy'])]
class TestNdimageMorphology:
@xfail_xp_backends('cupy', reason='CuPy does not have distance_transform_bf.')
@pytest.mark.parametrize('dtype', types)
def test_distance_transform_bf01(self, dtype, xp):
dtype = getattr(xp, dtype)
# brute force (bf) distance transform
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out, ft = ndimage.distance_transform_bf(data, 'euclidean',
return_indices=True)
expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 2, 4, 2, 1, 0, 0],
[0, 0, 1, 4, 8, 4, 1, 0, 0],
[0, 0, 1, 2, 4, 2, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
assert_array_almost_equal(out * out, expected)
expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 1, 2, 2, 2, 2],
[3, 3, 3, 2, 1, 2, 3, 3, 3],
[4, 4, 4, 4, 6, 4, 4, 4, 4],
[5, 5, 6, 6, 7, 6, 6, 5, 5],
[6, 6, 6, 7, 7, 7, 6, 6, 6],
[7, 7, 7, 7, 7, 7, 7, 7, 7],
[8, 8, 8, 8, 8, 8, 8, 8, 8]],
[[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 2, 4, 6, 6, 7, 8],
[0, 1, 1, 2, 4, 6, 7, 7, 8],
[0, 1, 1, 1, 6, 7, 7, 7, 8],
[0, 1, 2, 2, 4, 6, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8]]]
expected = xp.asarray(expected)
assert_array_almost_equal(ft, expected)
@xfail_xp_backends('cupy', reason='CuPy does not have distance_transform_bf.')
@pytest.mark.parametrize('dtype', types)
def test_distance_transform_bf02(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out, ft = ndimage.distance_transform_bf(data, 'cityblock',
return_indices=True)
expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 2, 2, 2, 1, 0, 0],
[0, 0, 1, 2, 3, 2, 1, 0, 0],
[0, 0, 1, 2, 2, 2, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
assert_array_almost_equal(out, expected)
expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 1, 2, 2, 2, 2],
[3, 3, 3, 3, 1, 3, 3, 3, 3],
[4, 4, 4, 4, 7, 4, 4, 4, 4],
[5, 5, 6, 7, 7, 7, 6, 5, 5],
[6, 6, 6, 7, 7, 7, 6, 6, 6],
[7, 7, 7, 7, 7, 7, 7, 7, 7],
[8, 8, 8, 8, 8, 8, 8, 8, 8]],
[[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 2, 4, 6, 6, 7, 8],
[0, 1, 1, 1, 4, 7, 7, 7, 8],
[0, 1, 1, 1, 4, 7, 7, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8]]]
expected = xp.asarray(expected)
assert_array_almost_equal(ft, expected)
@xfail_xp_backends('cupy', reason='CuPy does not have distance_transform_bf.')
@pytest.mark.parametrize('dtype', types)
def test_distance_transform_bf03(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out, ft = ndimage.distance_transform_bf(data, 'chessboard',
return_indices=True)
expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 2, 1, 1, 0, 0],
[0, 0, 1, 2, 2, 2, 1, 0, 0],
[0, 0, 1, 1, 2, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
assert_array_almost_equal(out, expected)
expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 1, 2, 2, 2, 2],
[3, 3, 4, 2, 2, 2, 4, 3, 3],
[4, 4, 5, 6, 6, 6, 5, 4, 4],
[5, 5, 6, 6, 7, 6, 6, 5, 5],
[6, 6, 6, 7, 7, 7, 6, 6, 6],
[7, 7, 7, 7, 7, 7, 7, 7, 7],
[8, 8, 8, 8, 8, 8, 8, 8, 8]],
[[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 2, 5, 6, 6, 7, 8],
[0, 1, 1, 2, 6, 6, 7, 7, 8],
[0, 1, 1, 2, 6, 7, 7, 7, 8],
[0, 1, 2, 2, 6, 6, 7, 7, 8],
[0, 1, 2, 4, 5, 6, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8]]]
expected = xp.asarray(expected)
assert_array_almost_equal(ft, expected)
@skip_xp_backends(
np_only=True, reason='inplace distances= arrays are numpy-specific'
)
@pytest.mark.parametrize('dtype', types)
def test_distance_transform_bf04(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
tdt, tft = ndimage.distance_transform_bf(data, return_indices=1)
dts = []
fts = []
dt = xp.zeros(data.shape, dtype=xp.float64)
ndimage.distance_transform_bf(data, distances=dt)
dts.append(dt)
ft = ndimage.distance_transform_bf(
data, return_distances=False, return_indices=1)
fts.append(ft)
ft = np.indices(data.shape, dtype=xp.int32)
ndimage.distance_transform_bf(
data, return_distances=False, return_indices=True, indices=ft)
fts.append(ft)
dt, ft = ndimage.distance_transform_bf(
data, return_indices=1)
dts.append(dt)
fts.append(ft)
dt = xp.zeros(data.shape, dtype=xp.float64)
ft = ndimage.distance_transform_bf(
data, distances=dt, return_indices=True)
dts.append(dt)
fts.append(ft)
ft = np.indices(data.shape, dtype=xp.int32)
dt = ndimage.distance_transform_bf(
data, return_indices=True, indices=ft)
dts.append(dt)
fts.append(ft)
dt = xp.zeros(data.shape, dtype=xp.float64)
ft = np.indices(data.shape, dtype=xp.int32)
ndimage.distance_transform_bf(
data, distances=dt, return_indices=True, indices=ft)
dts.append(dt)
fts.append(ft)
for dt in dts:
assert_array_almost_equal(tdt, dt)
for ft in fts:
assert_array_almost_equal(tft, ft)
@xfail_xp_backends('cupy', reason='CuPy does not have distance_transform_bf')
@pytest.mark.parametrize('dtype', types)
def test_distance_transform_bf05(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out, ft = ndimage.distance_transform_bf(
data, 'euclidean', return_indices=True, sampling=[2, 2])
expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 4, 4, 4, 0, 0, 0],
[0, 0, 4, 8, 16, 8, 4, 0, 0],
[0, 0, 4, 16, 32, 16, 4, 0, 0],
[0, 0, 4, 8, 16, 8, 4, 0, 0],
[0, 0, 0, 4, 4, 4, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
assert_array_almost_equal(out * out, expected)
expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 1, 2, 2, 2, 2],
[3, 3, 3, 2, 1, 2, 3, 3, 3],
[4, 4, 4, 4, 6, 4, 4, 4, 4],
[5, 5, 6, 6, 7, 6, 6, 5, 5],
[6, 6, 6, 7, 7, 7, 6, 6, 6],
[7, 7, 7, 7, 7, 7, 7, 7, 7],
[8, 8, 8, 8, 8, 8, 8, 8, 8]],
[[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 2, 4, 6, 6, 7, 8],
[0, 1, 1, 2, 4, 6, 7, 7, 8],
[0, 1, 1, 1, 6, 7, 7, 7, 8],
[0, 1, 2, 2, 4, 6, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8]]]
expected = xp.asarray(expected)
assert_array_almost_equal(ft, expected)
@xfail_xp_backends('cupy', reason='CuPy does not have distance_transform_bf')
@pytest.mark.parametrize('dtype', types)
def test_distance_transform_bf06(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out, ft = ndimage.distance_transform_bf(
data, 'euclidean', return_indices=True, sampling=[2, 1])
expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 4, 1, 0, 0, 0],
[0, 0, 1, 4, 8, 4, 1, 0, 0],
[0, 0, 1, 4, 9, 4, 1, 0, 0],
[0, 0, 1, 4, 8, 4, 1, 0, 0],
[0, 0, 0, 1, 4, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
assert_array_almost_equal(out * out, expected)
expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2, 2],
[3, 3, 3, 3, 2, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4, 4, 4, 4],
[5, 5, 5, 5, 6, 5, 5, 5, 5],
[6, 6, 6, 6, 7, 6, 6, 6, 6],
[7, 7, 7, 7, 7, 7, 7, 7, 7],
[8, 8, 8, 8, 8, 8, 8, 8, 8]],
[[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 2, 6, 6, 6, 7, 8],
[0, 1, 1, 1, 6, 7, 7, 7, 8],
[0, 1, 1, 1, 7, 7, 7, 7, 8],
[0, 1, 1, 1, 6, 7, 7, 7, 8],
[0, 1, 2, 2, 4, 6, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8]]]
expected = xp.asarray(expected)
assert_array_almost_equal(ft, expected)
@xfail_xp_backends("cupy", reason="CuPy does not have distance_transform_bf")
def test_distance_transform_bf07(self, xp):
# test input validation per discussion on PR #13302
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]])
with assert_raises(RuntimeError):
ndimage.distance_transform_bf(
data, return_distances=False, return_indices=False
)
@xfail_xp_backends("cupy", reason="CuPy does not have distance_transform_cdt")
@pytest.mark.parametrize('dtype', types)
def test_distance_transform_cdt01(self, dtype, xp):
dtype = getattr(xp, dtype)
# chamfer type distance (cdt) transform
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out, ft = ndimage.distance_transform_cdt(
data, 'cityblock', return_indices=True)
bf = ndimage.distance_transform_bf(data, 'cityblock')
assert_array_almost_equal(bf, out)
expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 1, 1, 1, 2, 2, 2],
[3, 3, 2, 1, 1, 1, 2, 3, 3],
[4, 4, 4, 4, 1, 4, 4, 4, 4],
[5, 5, 5, 5, 7, 7, 6, 5, 5],
[6, 6, 6, 6, 7, 7, 6, 6, 6],
[7, 7, 7, 7, 7, 7, 7, 7, 7],
[8, 8, 8, 8, 8, 8, 8, 8, 8]],
[[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 1, 1, 4, 7, 7, 7, 8],
[0, 1, 1, 1, 4, 5, 6, 7, 8],
[0, 1, 2, 2, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8]]]
expected = xp.asarray(expected)
assert_array_almost_equal(ft, expected)
@xfail_xp_backends("cupy", reason="CuPy does not have distance_transform_cdt")
@pytest.mark.parametrize('dtype', types)
def test_distance_transform_cdt02(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out, ft = ndimage.distance_transform_cdt(data, 'chessboard',
return_indices=True)
bf = ndimage.distance_transform_bf(data, 'chessboard')
assert_array_almost_equal(bf, out)
expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 1, 1, 1, 2, 2, 2],
[3, 3, 2, 2, 1, 2, 2, 3, 3],
[4, 4, 3, 2, 2, 2, 3, 4, 4],
[5, 5, 4, 6, 7, 6, 4, 5, 5],
[6, 6, 6, 6, 7, 7, 6, 6, 6],
[7, 7, 7, 7, 7, 7, 7, 7, 7],
[8, 8, 8, 8, 8, 8, 8, 8, 8]],
[[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 2, 3, 4, 6, 7, 8],
[0, 1, 1, 2, 2, 6, 6, 7, 8],
[0, 1, 1, 1, 2, 6, 7, 7, 8],
[0, 1, 1, 2, 6, 6, 7, 7, 8],
[0, 1, 2, 2, 5, 6, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8]]]
expected = xp.asarray(expected)
assert_array_almost_equal(ft, expected)
@skip_xp_backends(
np_only=True, reason='inplace indices= arrays are numpy-specific'
)
@pytest.mark.parametrize('dtype', types)
def test_distance_transform_cdt03(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
tdt, tft = ndimage.distance_transform_cdt(data, return_indices=True)
dts = []
fts = []
dt = xp.zeros(data.shape, dtype=xp.int32)
ndimage.distance_transform_cdt(data, distances=dt)
dts.append(dt)
ft = ndimage.distance_transform_cdt(
data, return_distances=False, return_indices=True)
fts.append(ft)
ft = xp.asarray(np.indices(data.shape, dtype=np.int32))
ndimage.distance_transform_cdt(
data, return_distances=False, return_indices=True, indices=ft)
fts.append(ft)
dt, ft = ndimage.distance_transform_cdt(
data, return_indices=True)
dts.append(dt)
fts.append(ft)
dt = xp.zeros(data.shape, dtype=xp.int32)
ft = ndimage.distance_transform_cdt(
data, distances=dt, return_indices=True)
dts.append(dt)
fts.append(ft)
ft = xp.asarray(np.indices(data.shape, dtype=np.int32))
dt = ndimage.distance_transform_cdt(
data, return_indices=True, indices=ft)
dts.append(dt)
fts.append(ft)
dt = xp.zeros(data.shape, dtype=xp.int32)
ft = xp.asarray(np.indices(data.shape, dtype=np.int32))
ndimage.distance_transform_cdt(data, distances=dt,
return_indices=True, indices=ft)
dts.append(dt)
fts.append(ft)
for dt in dts:
assert_array_almost_equal(tdt, dt)
for ft in fts:
assert_array_almost_equal(tft, ft)
@skip_xp_backends(
np_only=True, reason='XXX: does not raise unless indices is a numpy array'
)
def test_distance_transform_cdt04(self, xp):
# test input validation per discussion on PR #13302
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]])
indices_out = xp.zeros((data.ndim,) + data.shape, dtype=xp.int32)
with assert_raises(RuntimeError):
ndimage.distance_transform_bf(
data,
return_distances=True,
return_indices=False,
indices=indices_out
)
@xfail_xp_backends("cupy", reason="CuPy does not have distance_transform_cdt")
@xfail_xp_backends("torch", reason="int overflow")
@pytest.mark.parametrize('dtype', types)
def test_distance_transform_cdt05(self, dtype, xp):
dtype = getattr(xp, dtype)
# test custom metric type per discussion on issue #17381
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
metric_arg = xp.ones((3, 3))
actual = ndimage.distance_transform_cdt(data, metric=metric_arg)
assert xp.sum(actual) == -21
@xfail_xp_backends("cupy", reason="CuPy does not have distance_transform_bf")
@pytest.mark.parametrize('dtype', types)
def test_distance_transform_edt01(self, dtype, xp):
dtype = getattr(xp, dtype)
# euclidean distance transform (edt)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out, ft = ndimage.distance_transform_edt(data, return_indices=True)
bf = ndimage.distance_transform_bf(data, 'euclidean')
assert_array_almost_equal(bf, out)
# np-specific check
np_ft = np.asarray(ft)
dt = np_ft - np.indices(np_ft.shape[1:], dtype=np_ft.dtype)
dt = dt.astype(np.float64)
np.multiply(dt, dt, dt)
dt = np.add.reduce(dt, axis=0)
np.sqrt(dt, dt)
dt = xp.asarray(dt)
assert_array_almost_equal(bf, dt)
@skip_xp_backends(
np_only=True, reason='inplace distances= are numpy-specific'
)
@pytest.mark.parametrize('dtype', types)
def test_distance_transform_edt02(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
tdt, tft = ndimage.distance_transform_edt(data, return_indices=True)
dts = []
fts = []
dt = xp.zeros(data.shape, dtype=xp.float64)
ndimage.distance_transform_edt(data, distances=dt)
dts.append(dt)
ft = ndimage.distance_transform_edt(
data, return_distances=0, return_indices=True)
fts.append(ft)
ft = np.indices(data.shape, dtype=xp.int32)
ft = xp.asarray(ft)
ndimage.distance_transform_edt(
data, return_distances=False, return_indices=True, indices=ft)
fts.append(ft)
dt, ft = ndimage.distance_transform_edt(
data, return_indices=True)
dts.append(dt)
fts.append(ft)
dt = xp.zeros(data.shape, dtype=xp.float64)
ft = ndimage.distance_transform_edt(
data, distances=dt, return_indices=True)
dts.append(dt)
fts.append(ft)
ft = np.indices(data.shape, dtype=xp.int32)
ft = xp.asarray(ft)
dt = ndimage.distance_transform_edt(
data, return_indices=True, indices=ft)
dts.append(dt)
fts.append(ft)
dt = xp.zeros(data.shape, dtype=xp.float64)
ft = np.indices(data.shape, dtype=xp.int32)
ft = xp.asarray(ft)
ndimage.distance_transform_edt(
data, distances=dt, return_indices=True, indices=ft)
dts.append(dt)
fts.append(ft)
for dt in dts:
assert_array_almost_equal(tdt, dt)
for ft in fts:
assert_array_almost_equal(tft, ft)
@xfail_xp_backends("cupy", reason="CuPy does not have distance_transform_bf")
@pytest.mark.parametrize('dtype', types)
def test_distance_transform_edt03(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
ref = ndimage.distance_transform_bf(data, 'euclidean', sampling=[2, 2])
out = ndimage.distance_transform_edt(data, sampling=[2, 2])
assert_array_almost_equal(out, ref)
@xfail_xp_backends("cupy", reason="CuPy does not have distance_transform_bf")
@pytest.mark.parametrize('dtype', types)
def test_distance_transform_edt4(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
ref = ndimage.distance_transform_bf(data, 'euclidean', sampling=[2, 1])
out = ndimage.distance_transform_edt(data, sampling=[2, 1])
assert_array_almost_equal(out, ref)
@xfail_xp_backends(
"cupy", reason="Only 2D and 3D distance transforms are supported in CuPy"
)
def test_distance_transform_edt5(self, xp):
# Ticket #954 regression test
out = ndimage.distance_transform_edt(xp.asarray(False))
assert_array_almost_equal(out, xp.asarray([0.]))
@xfail_xp_backends(
np_only=True, reason='XXX: does not raise unless indices is a numpy array'
)
def test_distance_transform_edt6(self, xp):
# test input validation per discussion on PR #13302
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]])
distances_out = xp.zeros(data.shape, dtype=xp.float64)
with assert_raises(RuntimeError):
ndimage.distance_transform_bf(
data,
return_indices=True,
return_distances=False,
distances=distances_out
)
@skip_xp_backends(np_only=True,
reason="generate_binary_structure always generates numpy objects")
def test_generate_structure01(self, xp):
struct = ndimage.generate_binary_structure(0, 1)
assert struct == 1
@skip_xp_backends(np_only=True,
reason="generate_binary_structure always generates numpy objects")
def test_generate_structure02(self, xp):
struct = ndimage.generate_binary_structure(1, 1)
assert_array_almost_equal(struct, [1, 1, 1])
@skip_xp_backends(np_only=True,
reason="generate_binary_structure always generates numpy objects")
def test_generate_structure03(self, xp):
struct = ndimage.generate_binary_structure(2, 1)
assert_array_almost_equal(struct, [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]])
@skip_xp_backends(np_only=True,
reason="generate_binary_structure always generates numpy objects")
def test_generate_structure04(self, xp):
struct = ndimage.generate_binary_structure(2, 2)
assert_array_almost_equal(struct, [[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
def test_iterate_structure01(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
out = ndimage.iterate_structure(struct, 2)
expected = np.asarray([[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0]], dtype=bool)
expected = xp.asarray(expected)
assert_array_almost_equal(out, expected)
def test_iterate_structure02(self, xp):
struct = [[0, 1],
[1, 1],
[0, 1]]
struct = xp.asarray(struct)
out = ndimage.iterate_structure(struct, 2)
expected = np.asarray([[0, 0, 1],
[0, 1, 1],
[1, 1, 1],
[0, 1, 1],
[0, 0, 1]], dtype=bool)
expected = xp.asarray(expected)
assert_array_almost_equal(out, expected)
def test_iterate_structure03(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
out = ndimage.iterate_structure(struct, 2, 1)
expected = [[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0]]
expected = np.asarray(expected, dtype=bool)
expected = xp.asarray(expected)
assert_array_almost_equal(out[0], expected)
assert out[1] == [2, 2]
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion01(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([], dtype=dtype)
out = ndimage.binary_erosion(data)
assert out == xp.asarray(1, dtype=out.dtype)
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion02(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([], dtype=dtype)
out = ndimage.binary_erosion(data, border_value=1)
assert out == xp.asarray(1, dtype=out.dtype)
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion03(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([1], dtype=dtype)
out = ndimage.binary_erosion(data)
assert_array_almost_equal(out, xp.asarray([0]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion04(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([1], dtype=dtype)
out = ndimage.binary_erosion(data, border_value=1)
assert_array_almost_equal(out, xp.asarray([1]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion05(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([3], dtype=dtype)
out = ndimage.binary_erosion(data)
assert_array_almost_equal(out, xp.asarray([0, 1, 0]))
@pytest.mark.parametrize('dtype', types)
@xfail_xp_backends("cupy", reason="https://github.com/cupy/cupy/issues/8912")
def test_binary_erosion05_broadcasted(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones((1, ), dtype=dtype)
data = xp.broadcast_to(data, (3, ))
out = ndimage.binary_erosion(data)
assert_array_almost_equal(out, xp.asarray([0, 1, 0]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion06(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([3], dtype=dtype)
out = ndimage.binary_erosion(data, border_value=1)
assert_array_almost_equal(out, xp.asarray([1, 1, 1]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion07(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([5], dtype=dtype)
out = ndimage.binary_erosion(data)
assert_array_almost_equal(out, xp.asarray([0, 1, 1, 1, 0]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion08(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([5], dtype=dtype)
out = ndimage.binary_erosion(data, border_value=1)
assert_array_almost_equal(out, xp.asarray([1, 1, 1, 1, 1]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion09(self, dtype, xp):
data = np.ones([5], dtype=dtype)
data[2] = 0
data = xp.asarray(data)
out = ndimage.binary_erosion(data)
assert_array_almost_equal(out, xp.asarray([0, 0, 0, 0, 0]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion10(self, dtype, xp):
data = np.ones([5], dtype=dtype)
data[2] = 0
data = xp.asarray(data)
out = ndimage.binary_erosion(data, border_value=1)
assert_array_almost_equal(out, xp.asarray([1, 0, 0, 0, 1]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion11(self, dtype, xp):
data = np.ones([5], dtype=dtype)
data[2] = 0
data = xp.asarray(data)
struct = xp.asarray([1, 0, 1])
out = ndimage.binary_erosion(data, struct, border_value=1)
assert_array_almost_equal(out, xp.asarray([1, 0, 1, 0, 1]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion12(self, dtype, xp):
data = np.ones([5], dtype=dtype)
data[2] = 0
data = xp.asarray(data)
struct = xp.asarray([1, 0, 1])
out = ndimage.binary_erosion(data, struct, border_value=1, origin=-1)
assert_array_almost_equal(out, xp.asarray([0, 1, 0, 1, 1]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion13(self, dtype, xp):
data = np.ones([5], dtype=dtype)
data[2] = 0
data = xp.asarray(data)
struct = xp.asarray([1, 0, 1])
out = ndimage.binary_erosion(data, struct, border_value=1, origin=1)
assert_array_almost_equal(out, xp.asarray([1, 1, 0, 1, 0]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion14(self, dtype, xp):
data = np.ones([5], dtype=dtype)
data[2] = 0
data = xp.asarray(data)
struct = xp.asarray([1, 1])
out = ndimage.binary_erosion(data, struct, border_value=1)
assert_array_almost_equal(out, xp.asarray([1, 1, 0, 0, 1]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion15(self, dtype, xp):
data = np.ones([5], dtype=dtype)
data[2] = 0
data = xp.asarray(data)
struct = xp.asarray([1, 1])
out = ndimage.binary_erosion(data, struct, border_value=1, origin=-1)
assert_array_almost_equal(out, xp.asarray([1, 0, 0, 1, 1]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion16(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([1, 1], dtype=dtype)
out = ndimage.binary_erosion(data, border_value=1)
assert_array_almost_equal(out, xp.asarray([[1]]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion17(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([1, 1], dtype=dtype)
out = ndimage.binary_erosion(data)
assert_array_almost_equal(out, xp.asarray([[0]]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion18(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([1, 3], dtype=dtype)
out = ndimage.binary_erosion(data)
assert_array_almost_equal(out, xp.asarray([[0, 0, 0]]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion19(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([1, 3], dtype=dtype)
out = ndimage.binary_erosion(data, border_value=1)
assert_array_almost_equal(out, xp.asarray([[1, 1, 1]]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion20(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([3, 3], dtype=dtype)
out = ndimage.binary_erosion(data)
assert_array_almost_equal(out, xp.asarray([[0, 0, 0],
[0, 1, 0],
[0, 0, 0]]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion21(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([3, 3], dtype=dtype)
out = ndimage.binary_erosion(data, border_value=1)
assert_array_almost_equal(out, xp.asarray([[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]))
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion22(self, dtype, xp):
dtype = getattr(xp, dtype)
expected = [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 1, 1, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_erosion(data, border_value=1)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion23(self, dtype, xp):
dtype = getattr(xp, dtype)
struct = ndimage.generate_binary_structure(2, 2)
struct = xp.asarray(struct)
expected = [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 1, 1, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_erosion(data, struct, border_value=1)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion24(self, dtype, xp):
dtype = getattr(xp, dtype)
struct = xp.asarray([[0, 1],
[1, 1]])
expected = [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 1, 1, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_erosion(data, struct, border_value=1)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion25(self, dtype, xp):
dtype = getattr(xp, dtype)
struct = [[0, 1, 0],
[1, 0, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 1, 1, 1, 0, 1, 1],
[0, 0, 1, 0, 1, 1, 0, 0],
[0, 1, 0, 1, 1, 1, 1, 0],
[0, 1, 1, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_erosion(data, struct, border_value=1)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_erosion26(self, dtype, xp):
dtype = getattr(xp, dtype)
struct = [[0, 1, 0],
[1, 0, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 1],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1]]
expected = xp.asarray(expected)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 1, 1, 1, 0, 1, 1],
[0, 0, 1, 0, 1, 1, 0, 0],
[0, 1, 0, 1, 1, 1, 1, 0],
[0, 1, 1, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_erosion(data, struct, border_value=1,
origin=(-1, -1))
assert_array_almost_equal(out, expected)
@xfail_xp_backends(
"cupy", reason="CuPy: NotImplementedError: only brute_force iteration"
)
def test_binary_erosion27(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = [[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
data = np.asarray([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_erosion(data, struct, border_value=1,
iterations=2)
assert_array_almost_equal(out, expected)
@skip_xp_backends(np_only=True, exceptions=["cupy"],
reason='inplace out= arguments are numpy-specific')
@xfail_xp_backends("cupy",
reason="NotImplementedError: only brute_force iteration")
def test_binary_erosion28(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = [[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]
expected = np.asarray(expected, dtype=bool)
expected = xp.asarray(expected)
data = np.asarray([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = np.zeros(data.shape, dtype=bool)
out = xp.asarray(out)
ndimage.binary_erosion(data, struct, border_value=1,
iterations=2, output=out)
assert_array_almost_equal(out, expected)
@xfail_xp_backends(
"cupy", reason="CuPy: NotImplementedError: only brute_force iteration"
)
def test_binary_erosion29(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = [[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
data = np.asarray([[0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_erosion(data, struct,
border_value=1, iterations=3)
assert_array_almost_equal(out, expected)
@skip_xp_backends(np_only=True, exceptions=["cupy"],
reason='inplace out= arguments are numpy-specific')
@xfail_xp_backends("cupy",
reason="NotImplementedError: only brute_force iteration")
def test_binary_erosion30(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = [[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]
expected = np.asarray(expected, dtype=bool)
expected = xp.asarray(expected)
data = np.asarray([[0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = np.zeros(data.shape, dtype=bool)
out = xp.asarray(out)
ndimage.binary_erosion(data, struct, border_value=1,
iterations=3, output=out)
assert_array_almost_equal(out, expected)
# test with output memory overlap
ndimage.binary_erosion(data, struct, border_value=1,
iterations=3, output=data)
assert_array_almost_equal(data, expected)
@skip_xp_backends(np_only=True, exceptions=["cupy"],
reason='inplace out= arguments are numpy-specific')
def test_binary_erosion31(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = [[0, 0, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 0, 1],
[0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 1]]
expected = np.asarray(expected, dtype=bool)
expected = xp.asarray(expected)
data = np.asarray([[0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = np.zeros(data.shape, dtype=bool)
out = xp.asarray(out)
ndimage.binary_erosion(data, struct, border_value=1,
iterations=1, output=out, origin=(-1, -1))
assert_array_almost_equal(out, expected)
@xfail_xp_backends("cupy",
reason="NotImplementedError: only brute_force iteration")
def test_binary_erosion32(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = [[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
data = np.asarray([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_erosion(data, struct,
border_value=1, iterations=2)
assert_array_almost_equal(out, expected)
@xfail_xp_backends("cupy",
reason="NotImplementedError: only brute_force iteration")
def test_binary_erosion33(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = [[0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
mask = [[1, 1, 1, 1, 1, 0, 0],
[1, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1]]
mask = xp.asarray(mask)
data = np.asarray([[0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 1, 0, 0, 1],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_erosion(data, struct,
border_value=1, mask=mask, iterations=-1)
assert_array_almost_equal(out, expected)
def test_binary_erosion34(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = [[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
mask = [[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 0, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]
mask = xp.asarray(mask)
data = np.asarray([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_erosion(data, struct,
border_value=1, mask=mask)
assert_array_almost_equal(out, expected)
@skip_xp_backends(np_only=True, exceptions=["cupy"],
reason='inplace out= arguments are numpy-specific')
def test_binary_erosion35(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
mask = [[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 0, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]
mask = np.asarray(mask, dtype=bool)
mask = xp.asarray(mask)
data = np.asarray([[0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
tmp = [[0, 0, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 0, 1],
[0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 1]]
tmp = np.asarray(tmp, dtype=bool)
tmp = xp.asarray(tmp)
expected = xp.logical_and(tmp, mask)
tmp = xp.logical_and(data, xp.logical_not(mask))
expected = xp.logical_or(expected, tmp)
out = np.zeros(data.shape, dtype=bool)
out = xp.asarray(out)
ndimage.binary_erosion(data, struct, border_value=1,
iterations=1, output=out,
origin=(-1, -1), mask=mask)
assert_array_almost_equal(out, expected)
@xfail_xp_backends("cupy",
reason="NotImplementedError: only brute_force iteration")
def test_binary_erosion36(self, xp):
struct = [[0, 1, 0],
[1, 0, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
mask = [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
mask = np.asarray(mask, dtype=bool)
mask = xp.asarray(mask)
tmp = [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 1],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1]]
tmp = np.asarray(tmp, dtype=bool)
tmp = xp.asarray(tmp)
data = np.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 1, 1, 1, 0, 1, 1],
[0, 0, 1, 0, 1, 1, 0, 0],
[0, 1, 0, 1, 1, 1, 1, 0],
[0, 1, 1, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
expected = xp.logical_and(tmp, mask)
tmp = xp.logical_and(data, xp.logical_not(mask))
expected = xp.logical_or(expected, tmp)
out = ndimage.binary_erosion(data, struct, mask=mask,
border_value=1, origin=(-1, -1))
assert_array_almost_equal(out, expected)
@skip_xp_backends(np_only=True, exceptions=["cupy"],
reason='inplace out= arguments are numpy-specific')
@xfail_xp_backends("cupy",
reason="NotImplementedError: only brute_force iteration")
def test_binary_erosion37(self, xp):
a = np.asarray([[1, 0, 1],
[0, 1, 0],
[1, 0, 1]], dtype=bool)
a = xp.asarray(a)
b = xp.zeros_like(a)
out = ndimage.binary_erosion(a, structure=a, output=b, iterations=0,
border_value=True, brute_force=True)
assert out is b
xp_assert_equal(
ndimage.binary_erosion(a, structure=a, iterations=0,
border_value=True),
b)
def test_binary_erosion38(self, xp):
data = np.asarray([[1, 0, 1],
[0, 1, 0],
[1, 0, 1]], dtype=bool)
data = xp.asarray(data)
iterations = 2.0
with assert_raises(TypeError):
_ = ndimage.binary_erosion(data, iterations=iterations)
@skip_xp_backends(np_only=True, exceptions=["cupy"],
reason='inplace out= arguments are numpy-specific')
@xfail_xp_backends("cupy",
reason="NotImplementedError: only brute_force iteration")
def test_binary_erosion39(self, xp):
iterations = np.int32(3)
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = [[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected, dtype=bool)
expected = xp.asarray(expected)
data = np.asarray([[0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = np.zeros(data.shape, dtype=bool)
out = xp.asarray(out)
ndimage.binary_erosion(data, struct, border_value=1,
iterations=iterations, output=out)
assert_array_almost_equal(out, expected)
@skip_xp_backends(np_only=True, exceptions=["cupy"],
reason='inplace out= arguments are numpy-specific')
@xfail_xp_backends("cupy",
reason="NotImplementedError: only brute_force iteration")
def test_binary_erosion40(self, xp):
iterations = np.int64(3)
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = [[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]
expected = np.asarray(expected, dtype=bool)
expected = xp.asarray(expected)
data = np.asarray([[0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = np.zeros(data.shape, dtype=bool)
out = xp.asarray(out)
ndimage.binary_erosion(data, struct, border_value=1,
iterations=iterations, output=out)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation01(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([], dtype=dtype)
out = ndimage.binary_dilation(data)
assert out == xp.asarray(1, dtype=out.dtype)
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation02(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.zeros([], dtype=dtype)
out = ndimage.binary_dilation(data)
assert out == xp.asarray(False)
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation03(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([1], dtype=dtype)
out = ndimage.binary_dilation(data)
assert_array_almost_equal(out, xp.asarray([1], dtype=out.dtype))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation04(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.zeros([1], dtype=dtype)
out = ndimage.binary_dilation(data)
assert_array_almost_equal(out, xp.asarray([0]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation05(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([3], dtype=dtype)
out = ndimage.binary_dilation(data)
assert_array_almost_equal(out, xp.asarray([1, 1, 1]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation05_broadcasted(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones((1, ), dtype=dtype)
data = xp.broadcast_to(data, (3,))
out = ndimage.binary_dilation(data)
assert_array_almost_equal(out, xp.asarray([1, 1, 1]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation06(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.zeros([3], dtype=dtype)
out = ndimage.binary_dilation(data)
assert_array_almost_equal(out, xp.asarray([0, 0, 0]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation07(self, dtype, xp):
data = np.zeros([3], dtype=dtype)
data[1] = 1
data = xp.asarray(data)
out = ndimage.binary_dilation(data)
assert_array_almost_equal(out, xp.asarray([1, 1, 1]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation08(self, dtype, xp):
data = np.zeros([5], dtype=dtype)
data[1] = 1
data[3] = 1
data = xp.asarray(data)
out = ndimage.binary_dilation(data)
assert_array_almost_equal(out, xp.asarray([1, 1, 1, 1, 1]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation09(self, dtype, xp):
data = np.zeros([5], dtype=dtype)
data[1] = 1
data = xp.asarray(data)
out = ndimage.binary_dilation(data)
assert_array_almost_equal(out, xp.asarray([1, 1, 1, 0, 0]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation10(self, dtype, xp):
data = np.zeros([5], dtype=dtype)
data[1] = 1
data = xp.asarray(data)
out = ndimage.binary_dilation(data, origin=-1)
assert_array_almost_equal(out, xp.asarray([0, 1, 1, 1, 0]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation11(self, dtype, xp):
data = np.zeros([5], dtype=dtype)
data[1] = 1
data = xp.asarray(data)
out = ndimage.binary_dilation(data, origin=1)
assert_array_almost_equal(out, xp.asarray([1, 1, 0, 0, 0]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation12(self, dtype, xp):
data = np.zeros([5], dtype=dtype)
data[1] = 1
data = xp.asarray(data)
struct = xp.asarray([1, 0, 1])
out = ndimage.binary_dilation(data, struct)
assert_array_almost_equal(out, xp.asarray([1, 0, 1, 0, 0]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation13(self, dtype, xp):
data = np.zeros([5], dtype=dtype)
data[1] = 1
data = xp.asarray(data)
struct = xp.asarray([1, 0, 1])
out = ndimage.binary_dilation(data, struct, border_value=1)
assert_array_almost_equal(out, xp.asarray([1, 0, 1, 0, 1]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation14(self, dtype, xp):
data = np.zeros([5], dtype=dtype)
data[1] = 1
data = xp.asarray(data)
struct = xp.asarray([1, 0, 1])
out = ndimage.binary_dilation(data, struct, origin=-1)
assert_array_almost_equal(out, xp.asarray([0, 1, 0, 1, 0]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation15(self, dtype, xp):
data = np.zeros([5], dtype=dtype)
data[1] = 1
data = xp.asarray(data)
struct = xp.asarray([1, 0, 1])
out = ndimage.binary_dilation(data, struct,
origin=-1, border_value=1)
assert_array_almost_equal(out, xp.asarray([1, 1, 0, 1, 0]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation16(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([1, 1], dtype=dtype)
out = ndimage.binary_dilation(data)
assert_array_almost_equal(out, xp.asarray([[1]]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation17(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.zeros([1, 1], dtype=dtype)
out = ndimage.binary_dilation(data)
assert_array_almost_equal(out, xp.asarray([[0]]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation18(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([1, 3], dtype=dtype)
out = ndimage.binary_dilation(data)
assert_array_almost_equal(out, xp.asarray([[1, 1, 1]]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation19(self, dtype, xp):
dtype = getattr(xp, dtype)
data = xp.ones([3, 3], dtype=dtype)
out = ndimage.binary_dilation(data)
assert_array_almost_equal(out, xp.asarray([[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation20(self, dtype, xp):
data = np.zeros([3, 3], dtype=dtype)
data[1, 1] = 1
data = xp.asarray(data)
out = ndimage.binary_dilation(data)
assert_array_almost_equal(out, xp.asarray([[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation21(self, dtype, xp):
struct = ndimage.generate_binary_structure(2, 2)
struct = xp.asarray(struct)
data = np.zeros([3, 3], dtype=dtype)
data[1, 1] = 1
data = xp.asarray(data)
out = ndimage.binary_dilation(data, struct)
assert_array_almost_equal(out, xp.asarray([[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]))
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation22(self, dtype, xp):
dtype = getattr(xp, dtype)
expected = [[0, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_dilation(data)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation23(self, dtype, xp):
dtype = getattr(xp, dtype)
expected = [[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 0, 0, 0, 0, 1],
[1, 1, 0, 0, 0, 1, 0, 1],
[1, 0, 0, 1, 1, 1, 1, 1],
[1, 0, 1, 1, 1, 1, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 1],
[1, 0, 1, 0, 0, 1, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 1]]
expected = xp.asarray(expected)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_dilation(data, border_value=1)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation24(self, dtype, xp):
dtype = getattr(xp, dtype)
expected = [[1, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_dilation(data, origin=(1, 1))
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation25(self, dtype, xp):
dtype = getattr(xp, dtype)
expected = [[1, 1, 0, 0, 0, 0, 1, 1],
[1, 0, 0, 0, 1, 0, 1, 1],
[0, 0, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 0, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1],
[0, 1, 0, 0, 1, 0, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1]]
expected = xp.asarray(expected)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_dilation(data, origin=(1, 1), border_value=1)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation26(self, dtype, xp):
dtype = getattr(xp, dtype)
struct = ndimage.generate_binary_structure(2, 2)
expected = [[1, 1, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
struct = xp.asarray(struct)
expected = xp.asarray(expected)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_dilation(data, struct)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation27(self, dtype, xp):
dtype = getattr(xp, dtype)
struct = [[0, 1],
[1, 1]]
expected = [[0, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
struct = xp.asarray(struct)
expected = xp.asarray(expected)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_dilation(data, struct)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation28(self, dtype, xp):
dtype = getattr(xp, dtype)
expected = [[1, 1, 1, 1],
[1, 0, 0, 1],
[1, 0, 0, 1],
[1, 1, 1, 1]]
expected = xp.asarray(expected)
data = xp.asarray([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_dilation(data, border_value=1)
assert_array_almost_equal(out, expected)
@xfail_xp_backends("cupy",
reason="NotImplementedError: only brute_force iteration")
def test_binary_dilation29(self, xp):
struct = [[0, 1],
[1, 1]]
expected = [[0, 0, 0, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]]
struct = xp.asarray(struct)
expected = xp.asarray(expected)
data = np.asarray([[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_dilation(data, struct, iterations=2)
assert_array_almost_equal(out, expected)
@skip_xp_backends(np_only=True, exceptions=["cupy"],
reason='output= arrays are numpy-specific')
@xfail_xp_backends("cupy",
reason="NotImplementedError: only brute_force iteration")
def test_binary_dilation30(self, xp):
struct = [[0, 1],
[1, 1]]
expected = [[0, 0, 0, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]]
struct = xp.asarray(struct)
expected = xp.asarray(expected)
data = xp.asarray([[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = np.zeros(data.shape, dtype=bool)
out = xp.asarray(out)
ndimage.binary_dilation(data, struct, iterations=2, output=out)
assert_array_almost_equal(out, expected)
@xfail_xp_backends("cupy",
reason="NotImplementedError: only brute_force iteration")
def test_binary_dilation31(self, xp):
struct = [[0, 1],
[1, 1]]
expected = [[0, 0, 0, 1, 0],
[0, 0, 1, 1, 0],
[0, 1, 1, 1, 0],
[1, 1, 1, 1, 0],
[0, 0, 0, 0, 0]]
struct = xp.asarray(struct)
expected = xp.asarray(expected)
data = np.asarray([[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_dilation(data, struct, iterations=3)
assert_array_almost_equal(out, expected)
@skip_xp_backends(np_only=True, exceptions=["cupy"],
reason='output= arrays are numpy-specific')
@xfail_xp_backends("cupy",
reason="NotImplementedError: only brute_force iteration")
def test_binary_dilation32(self, xp):
struct = [[0, 1],
[1, 1]]
expected = [[0, 0, 0, 1, 0],
[0, 0, 1, 1, 0],
[0, 1, 1, 1, 0],
[1, 1, 1, 1, 0],
[0, 0, 0, 0, 0]]
struct = xp.asarray(struct)
expected = xp.asarray(expected)
data = np.asarray([[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = np.zeros(data.shape, dtype=bool)
out = xp.asarray(out)
ndimage.binary_dilation(data, struct, iterations=3, output=out)
assert_array_almost_equal(out, expected)
@xfail_xp_backends("cupy",
reason="NotImplementedError: only brute_force iteration")
def test_binary_dilation33(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = np.asarray([[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
expected = xp.asarray(expected)
mask = np.asarray([[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
mask = xp.asarray(mask)
data = np.asarray([[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_dilation(data, struct, iterations=-1,
mask=mask, border_value=0)
assert_array_almost_equal(out, expected)
@skip_xp_backends(np_only=True, exceptions=["cupy"],
reason='inplace output= arrays are numpy-specific')
@xfail_xp_backends("cupy",
reason="NotImplementedError: only brute_force iteration")
def test_binary_dilation34(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = [[0, 1, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
mask = np.asarray([[0, 1, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
mask = xp.asarray(mask)
data = np.zeros(mask.shape, dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_dilation(data, struct, iterations=-1,
mask=mask, border_value=1)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_dilation35(self, dtype, xp):
dtype = getattr(xp, dtype)
tmp = [[1, 1, 0, 0, 0, 0, 1, 1],
[1, 0, 0, 0, 1, 0, 1, 1],
[0, 0, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 0, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1],
[0, 1, 0, 0, 1, 0, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1]]
data = np.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]])
mask = [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
mask = np.asarray(mask, dtype=bool)
expected = np.logical_and(tmp, mask)
tmp = np.logical_and(data, np.logical_not(mask))
expected = np.logical_or(expected, tmp)
mask = xp.asarray(mask)
expected = xp.asarray(expected)
data = xp.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_dilation(data, mask=mask,
origin=(1, 1), border_value=1)
assert_array_almost_equal(out, expected)
def test_binary_dilation36(self, xp):
# gh-21009
data = np.zeros([], dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_dilation(data, iterations=-1)
assert out == xp.asarray(False)
def test_binary_propagation01(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = np.asarray([[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
expected = xp.asarray(expected)
mask = np.asarray([[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
mask = xp.asarray(mask)
data = np.asarray([[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_propagation(data, struct,
mask=mask, border_value=0)
assert_array_almost_equal(out, expected)
def test_binary_propagation02(self, xp):
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
expected = [[0, 1, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
struct = xp.asarray(struct)
mask = np.asarray([[0, 1, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
mask = xp.asarray(mask)
data = np.zeros(mask.shape, dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_propagation(data, struct,
mask=mask, border_value=1)
assert_array_almost_equal(out, expected)
def test_binary_propagation03(self, xp):
# gh-21009
data = xp.asarray(np.zeros([], dtype=bool))
expected = xp.asarray(np.zeros([], dtype=bool))
out = ndimage.binary_propagation(data)
assert out == expected
@pytest.mark.parametrize('dtype', types)
def test_binary_opening01(self, dtype, xp):
dtype = getattr(xp, dtype)
expected = [[0, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
data = xp.asarray([[0, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 0, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_opening(data)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_opening02(self, dtype, xp):
dtype = getattr(xp, dtype)
struct = ndimage.generate_binary_structure(2, 2)
expected = [[1, 1, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
struct = xp.asarray(struct)
data = xp.asarray([[1, 1, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_opening(data, struct)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_closing01(self, dtype, xp):
dtype = getattr(xp, dtype)
expected = [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
data = xp.asarray([[0, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 0, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_closing(data)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_binary_closing02(self, dtype, xp):
dtype = getattr(xp, dtype)
struct = ndimage.generate_binary_structure(2, 2)
expected = [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
struct = xp.asarray(struct)
data = xp.asarray([[1, 1, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_closing(data, struct)
assert_array_almost_equal(out, expected)
def test_binary_fill_holes01(self, xp):
expected = np.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
expected = xp.asarray(expected)
data = np.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_fill_holes(data)
assert_array_almost_equal(out, expected)
def test_binary_fill_holes02(self, xp):
expected = np.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
expected = xp.asarray(expected)
data = np.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_fill_holes(data)
assert_array_almost_equal(out, expected)
def test_binary_fill_holes03(self, xp):
expected = np.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 1, 1, 1],
[0, 1, 1, 1, 0, 1, 1, 1],
[0, 1, 1, 1, 0, 1, 1, 1],
[0, 0, 1, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
expected = xp.asarray(expected)
data = np.asarray([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 1, 0, 1, 1, 1],
[0, 1, 0, 1, 0, 1, 0, 1],
[0, 1, 0, 1, 0, 1, 0, 1],
[0, 0, 1, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool)
data = xp.asarray(data)
out = ndimage.binary_fill_holes(data)
assert_array_almost_equal(out, expected)
@skip_xp_backends(cpu_only=True)
@skip_xp_backends(
"cupy", reason="these filters do not yet have axes support in CuPy")
@skip_xp_backends(
"jax.numpy", reason="these filters are not implemented in JAX.numpy")
@pytest.mark.parametrize('border_value',[0, 1])
@pytest.mark.parametrize('origin', [(0, 0), (-1, 0)])
@pytest.mark.parametrize('expand_axis', [0, 1, 2])
@pytest.mark.parametrize('func_name', ["binary_erosion",
"binary_dilation",
"binary_opening",
"binary_closing",
"binary_hit_or_miss",
"binary_propagation",
"binary_fill_holes"])
def test_binary_axes(self, xp, func_name, expand_axis, origin, border_value):
struct = np.asarray([[0, 1, 0],
[1, 1, 1],
[0, 1, 0]], bool)
struct = xp.asarray(struct)
data = np.asarray([[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 0, 1, 0],
[0, 1, 0, 1, 1, 0, 1],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0]], bool)
data = xp.asarray(data)
if func_name == "binary_hit_or_miss":
kwargs = dict(origin1=origin, origin2=origin)
else:
kwargs = dict(origin=origin)
border_supported = func_name not in ["binary_hit_or_miss",
"binary_fill_holes"]
if border_supported:
kwargs['border_value'] = border_value
elif border_value != 0:
pytest.skip('border_value !=0 unsupported by this function')
func = getattr(ndimage, func_name)
expected = func(data, struct, **kwargs)
# replicate data and expected result along a new axis
n_reps = 5
expected = xp.stack([expected] * n_reps, axis=expand_axis)
data = xp.stack([data] * n_reps, axis=expand_axis)
# filter all axes except expand_axis
axes = [0, 1, 2]
axes.remove(expand_axis)
if is_numpy(xp) or is_cupy(xp):
out = xp.asarray(np.zeros(data.shape, bool))
func(data, struct, output=out, axes=axes, **kwargs)
else:
# inplace output= is unsupported by JAX
out = func(data, struct, axes=axes, **kwargs)
xp_assert_close(out, expected)
def test_grey_erosion01(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
output = ndimage.grey_erosion(array, footprint=footprint)
assert_array_almost_equal(output,
xp.asarray([[2, 2, 1, 1, 1],
[2, 3, 1, 3, 1],
[5, 5, 3, 3, 1]]))
@skip_xp_backends("jax.numpy", reason="output=array requires buffer view")
@skip_xp_backends("dask.array", reason="output=array requires buffer view")
@xfail_xp_backends("cupy", reason="https://github.com/cupy/cupy/issues/8398")
def test_grey_erosion01_overlap(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
ndimage.grey_erosion(array, footprint=footprint, output=array)
assert_array_almost_equal(array,
xp.asarray([[2, 2, 1, 1, 1],
[2, 3, 1, 3, 1],
[5, 5, 3, 3, 1]])
)
def test_grey_erosion02(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
structure = xp.asarray([[0, 0, 0], [0, 0, 0]])
output = ndimage.grey_erosion(array, footprint=footprint,
structure=structure)
assert_array_almost_equal(output,
xp.asarray([[2, 2, 1, 1, 1],
[2, 3, 1, 3, 1],
[5, 5, 3, 3, 1]])
)
def test_grey_erosion03(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
structure = xp.asarray([[1, 1, 1], [1, 1, 1]])
output = ndimage.grey_erosion(array, footprint=footprint,
structure=structure)
assert_array_almost_equal(output,
xp.asarray([[1, 1, 0, 0, 0],
[1, 2, 0, 2, 0],
[4, 4, 2, 2, 0]])
)
def test_grey_dilation01(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[0, 1, 1], [1, 0, 1]])
output = ndimage.grey_dilation(array, footprint=footprint)
assert_array_almost_equal(output,
xp.asarray([[7, 7, 9, 9, 5],
[7, 9, 8, 9, 7],
[8, 8, 8, 7, 7]]),
)
def test_grey_dilation02(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[0, 1, 1], [1, 0, 1]])
structure = xp.asarray([[0, 0, 0], [0, 0, 0]])
output = ndimage.grey_dilation(array, footprint=footprint,
structure=structure)
assert_array_almost_equal(output,
xp.asarray([[7, 7, 9, 9, 5],
[7, 9, 8, 9, 7],
[8, 8, 8, 7, 7]]),
)
def test_grey_dilation03(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[0, 1, 1], [1, 0, 1]])
structure = xp.asarray([[1, 1, 1], [1, 1, 1]])
output = ndimage.grey_dilation(array, footprint=footprint,
structure=structure)
assert_array_almost_equal(output,
xp.asarray([[8, 8, 10, 10, 6],
[8, 10, 9, 10, 8],
[9, 9, 9, 8, 8]]),
)
def test_grey_opening01(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
tmp = ndimage.grey_erosion(array, footprint=footprint)
expected = ndimage.grey_dilation(tmp, footprint=footprint)
output = ndimage.grey_opening(array, footprint=footprint)
assert_array_almost_equal(output, expected)
def test_grey_opening02(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
structure = xp.asarray([[0, 0, 0], [0, 0, 0]])
tmp = ndimage.grey_erosion(array, footprint=footprint,
structure=structure)
expected = ndimage.grey_dilation(tmp, footprint=footprint,
structure=structure)
output = ndimage.grey_opening(array, footprint=footprint,
structure=structure)
assert_array_almost_equal(output, expected)
def test_grey_closing01(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
tmp = ndimage.grey_dilation(array, footprint=footprint)
expected = ndimage.grey_erosion(tmp, footprint=footprint)
output = ndimage.grey_closing(array, footprint=footprint)
assert_array_almost_equal(output, expected)
def test_grey_closing02(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
structure = xp.asarray([[0, 0, 0], [0, 0, 0]])
tmp = ndimage.grey_dilation(array, footprint=footprint,
structure=structure)
expected = ndimage.grey_erosion(tmp, footprint=footprint,
structure=structure)
output = ndimage.grey_closing(array, footprint=footprint,
structure=structure)
assert_array_almost_equal(output, expected)
@skip_xp_backends(np_only=True, reason='output= arrays are numpy-specific')
def test_morphological_gradient01(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
structure = xp.asarray([[0, 0, 0], [0, 0, 0]])
tmp1 = ndimage.grey_dilation(array, footprint=footprint,
structure=structure)
tmp2 = ndimage.grey_erosion(array, footprint=footprint,
structure=structure)
expected = tmp1 - tmp2
output = xp.zeros(array.shape, dtype=array.dtype)
ndimage.morphological_gradient(array, footprint=footprint,
structure=structure, output=output)
assert_array_almost_equal(output, expected)
def test_morphological_gradient02(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
structure = xp.asarray([[0, 0, 0], [0, 0, 0]])
tmp1 = ndimage.grey_dilation(array, footprint=footprint,
structure=structure)
tmp2 = ndimage.grey_erosion(array, footprint=footprint,
structure=structure)
expected = tmp1 - tmp2
output = ndimage.morphological_gradient(array, footprint=footprint,
structure=structure)
assert_array_almost_equal(output, expected)
@skip_xp_backends(np_only=True, reason='output= arrays are numpy-specific')
def test_morphological_laplace01(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
structure = xp.asarray([[0, 0, 0], [0, 0, 0]])
tmp1 = ndimage.grey_dilation(array, footprint=footprint,
structure=structure)
tmp2 = ndimage.grey_erosion(array, footprint=footprint,
structure=structure)
expected = tmp1 + tmp2 - 2 * array
output = xp.zeros(array.shape, dtype=array.dtype)
ndimage.morphological_laplace(array, footprint=footprint,
structure=structure, output=output)
assert_array_almost_equal(output, expected)
def test_morphological_laplace02(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
structure = xp.asarray([[0, 0, 0], [0, 0, 0]])
tmp1 = ndimage.grey_dilation(array, footprint=footprint,
structure=structure)
tmp2 = ndimage.grey_erosion(array, footprint=footprint,
structure=structure)
expected = tmp1 + tmp2 - 2 * array
output = ndimage.morphological_laplace(array, footprint=footprint,
structure=structure)
assert_array_almost_equal(output, expected)
@skip_xp_backends("jax.numpy", reason="output=array requires buffer view")
@skip_xp_backends("dask.array", reason="output=array requires buffer view")
def test_white_tophat01(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
structure = xp.asarray([[0, 0, 0], [0, 0, 0]])
tmp = ndimage.grey_opening(array, footprint=footprint,
structure=structure)
expected = array - tmp
output = xp.zeros(array.shape, dtype=array.dtype)
ndimage.white_tophat(array, footprint=footprint,
structure=structure, output=output)
assert_array_almost_equal(output, expected)
def test_white_tophat02(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
structure = xp.asarray([[0, 0, 0], [0, 0, 0]])
tmp = ndimage.grey_opening(array, footprint=footprint,
structure=structure)
expected = array - tmp
output = ndimage.white_tophat(array, footprint=footprint,
structure=structure)
assert_array_almost_equal(output, expected)
@xfail_xp_backends('cupy', reason="cupy#8399")
def test_white_tophat03(self, xp):
array = np.asarray([[1, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 1]], dtype=bool)
array = xp.asarray(array)
structure = np.ones((3, 3), dtype=bool)
structure = xp.asarray(structure)
expected = np.asarray([[0, 1, 1, 0, 0, 0, 0],
[1, 0, 0, 1, 1, 1, 0],
[1, 0, 0, 1, 1, 1, 0],
[0, 1, 1, 0, 0, 0, 1],
[0, 1, 1, 0, 1, 0, 1],
[0, 1, 1, 0, 0, 0, 1],
[0, 0, 0, 1, 1, 1, 1]], dtype=bool)
expected = xp.asarray(expected)
output = ndimage.white_tophat(array, structure=structure)
xp_assert_equal(output, expected)
@skip_xp_backends("jax.numpy", reason="output=array requires buffer view")
@skip_xp_backends("dask.array", reason="output=array requires buffer view")
def test_white_tophat04(self, xp):
array = np.eye(5, dtype=bool)
structure = np.ones((3, 3), dtype=bool)
array = xp.asarray(array)
structure = xp.asarray(structure)
# Check that type mismatch is properly handled
output = xp.empty_like(array, dtype=xp.float64)
ndimage.white_tophat(array, structure=structure, output=output)
@skip_xp_backends("jax.numpy", reason="output=array requires buffer view")
@skip_xp_backends("dask.array", reason="output=array requires buffer view")
def test_black_tophat01(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
structure = xp.asarray([[0, 0, 0], [0, 0, 0]])
tmp = ndimage.grey_closing(array, footprint=footprint,
structure=structure)
expected = tmp - array
output = xp.zeros(array.shape, dtype=array.dtype)
ndimage.black_tophat(array, footprint=footprint,
structure=structure, output=output)
assert_array_almost_equal(output, expected)
def test_black_tophat02(self, xp):
array = xp.asarray([[3, 2, 5, 1, 4],
[7, 6, 9, 3, 5],
[5, 8, 3, 7, 1]])
footprint = xp.asarray([[1, 0, 1], [1, 1, 0]])
structure = xp.asarray([[0, 0, 0], [0, 0, 0]])
tmp = ndimage.grey_closing(array, footprint=footprint,
structure=structure)
expected = tmp - array
output = ndimage.black_tophat(array, footprint=footprint,
structure=structure)
assert_array_almost_equal(output, expected)
@xfail_xp_backends('cupy', reason="cupy/cupy#8399")
def test_black_tophat03(self, xp):
array = np.asarray([[1, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 0, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 1]], dtype=bool)
array = xp.asarray(array)
structure = np.ones((3, 3), dtype=bool)
structure = xp.asarray(structure)
expected = np.asarray([[0, 1, 1, 1, 1, 1, 1],
[1, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 1, 0, 1],
[1, 0, 0, 0, 0, 0, 1],
[1, 1, 1, 1, 1, 1, 0]], dtype=bool)
expected = xp.asarray(expected)
output = ndimage.black_tophat(array, structure=structure)
xp_assert_equal(output, expected)
@skip_xp_backends("jax.numpy", reason="output=array requires buffer view")
@skip_xp_backends("dask.array", reason="output=array requires buffer view")
def test_black_tophat04(self, xp):
array = xp.asarray(np.eye(5, dtype=bool))
structure = xp.asarray(np.ones((3, 3), dtype=bool))
# Check that type mismatch is properly handled
output = xp.empty_like(array, dtype=xp.float64)
ndimage.black_tophat(array, structure=structure, output=output)
@skip_xp_backends(cpu_only=True)
@skip_xp_backends(
"cupy", reason="these filters do not yet have axes support in CuPy")
@skip_xp_backends(
"jax.numpy", reason="these filters are not implemented in JAX.numpy")
@pytest.mark.parametrize('origin', [(0, 0), (-1, 0)])
@pytest.mark.parametrize('expand_axis', [0, 1, 2])
@pytest.mark.parametrize('mode', ['reflect', 'constant', 'nearest',
'mirror', 'wrap'])
@pytest.mark.parametrize('footprint_mode', ['size', 'footprint',
'structure'])
@pytest.mark.parametrize('func_name', ["grey_erosion",
"grey_dilation",
"grey_opening",
"grey_closing",
"morphological_laplace",
"morphological_gradient",
"white_tophat",
"black_tophat"])
def test_grey_axes(self, xp, func_name, expand_axis, origin, footprint_mode,
mode):
data = xp.asarray([[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 4, 0, 0, 0],
[0, 0, 2, 1, 0, 2, 0],
[0, 3, 0, 6, 5, 0, 1],
[0, 4, 5, 3, 3, 4, 0],
[0, 0, 9, 3, 0, 0, 0],
[0, 0, 0, 2, 0, 0, 0]])
kwargs = dict(origin=origin, mode=mode)
if footprint_mode == 'size':
kwargs['size'] = (2, 3)
else:
kwargs['footprint'] = xp.asarray([[1, 0, 1], [1, 1, 0]])
if footprint_mode == 'structure':
kwargs['structure'] = xp.ones_like(kwargs['footprint'])
func = getattr(ndimage, func_name)
expected = func(data, **kwargs)
# replicate data and expected result along a new axis
n_reps = 5
expected = xp.stack([expected] * n_reps, axis=expand_axis)
data = xp.stack([data] * n_reps, axis=expand_axis)
# filter all axes except expand_axis
axes = [0, 1, 2]
axes.remove(expand_axis)
if is_numpy(xp) or is_cupy(xp):
out = xp.zeros(expected.shape, dtype=expected.dtype)
func(data, output=out, axes=axes, **kwargs)
else:
# inplace output= is unsupported by JAX
out = func(data, axes=axes, **kwargs)
xp_assert_close(out, expected)
@skip_xp_backends(np_only=True, exceptions=["cupy"],
reason="inplace output= is numpy-specific")
@pytest.mark.parametrize('dtype', types)
def test_hit_or_miss01(self, dtype, xp):
dtype = getattr(xp, dtype)
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
struct = xp.asarray(struct)
expected = [[0, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]
expected = xp.asarray(expected)
data = xp.asarray([[0, 1, 0, 0, 0],
[1, 1, 1, 0, 0],
[0, 1, 0, 1, 1],
[0, 0, 1, 1, 1],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 1],
[0, 1, 1, 1, 1],
[0, 0, 0, 0, 0]], dtype=dtype)
out = xp.asarray(np.zeros(data.shape, dtype=bool))
ndimage.binary_hit_or_miss(data, struct, output=out)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_hit_or_miss02(self, dtype, xp):
dtype = getattr(xp, dtype)
struct = [[0, 1, 0],
[1, 1, 1],
[0, 1, 0]]
expected = [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
struct = xp.asarray(struct)
expected = xp.asarray(expected)
data = xp.asarray([[0, 1, 0, 0, 1, 1, 1, 0],
[1, 1, 1, 0, 0, 1, 0, 0],
[0, 1, 0, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_hit_or_miss(data, struct)
assert_array_almost_equal(out, expected)
@pytest.mark.parametrize('dtype', types)
def test_hit_or_miss03(self, dtype, xp):
dtype = getattr(xp, dtype)
struct1 = [[0, 0, 0],
[1, 1, 1],
[0, 0, 0]]
struct2 = [[1, 1, 1],
[0, 0, 0],
[1, 1, 1]]
expected = [[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
struct1 = xp.asarray(struct1)
struct2 = xp.asarray(struct2)
expected = xp.asarray(expected)
data = xp.asarray([[0, 1, 0, 0, 1, 1, 1, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 0, 1, 1, 0],
[0, 0, 0, 0, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=dtype)
out = ndimage.binary_hit_or_miss(data, struct1, struct2)
assert_array_almost_equal(out, expected)
class TestDilateFix:
# pytest's setup_method seems to clash with the autouse `xp` fixture
# so call _setup manually from all methods
def _setup(self, xp):
# dilation related setup
self.array = xp.asarray([[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 1, 1, 0],
[0, 0, 0, 0, 0]], dtype=xp.uint8)
self.sq3x3 = xp.ones((3, 3))
dilated3x3 = ndimage.binary_dilation(self.array, structure=self.sq3x3)
if is_numpy(xp):
self.dilated3x3 = dilated3x3.view(xp.uint8)
else:
self.dilated3x3 = xp.astype(dilated3x3, xp.uint8)
def test_dilation_square_structure(self, xp):
self._setup(xp)
result = ndimage.grey_dilation(self.array, structure=self.sq3x3)
# +1 accounts for difference between grey and binary dilation
assert_array_almost_equal(result, self.dilated3x3 + 1)
def test_dilation_scalar_size(self, xp):
self._setup(xp)
result = ndimage.grey_dilation(self.array, size=3)
assert_array_almost_equal(result, self.dilated3x3)
class TestBinaryOpeningClosing:
def _setup(self, xp):
a = np.zeros((5, 5), dtype=bool)
a[1:4, 1:4] = True
a[4, 4] = True
self.array = xp.asarray(a)
self.sq3x3 = xp.ones((3, 3))
self.opened_old = ndimage.binary_opening(self.array, self.sq3x3,
1, None, 0)
self.closed_old = ndimage.binary_closing(self.array, self.sq3x3,
1, None, 0)
def test_opening_new_arguments(self, xp):
self._setup(xp)
opened_new = ndimage.binary_opening(self.array, self.sq3x3, 1, None,
0, None, 0, False)
xp_assert_equal(opened_new, self.opened_old)
def test_closing_new_arguments(self, xp):
self._setup(xp)
closed_new = ndimage.binary_closing(self.array, self.sq3x3, 1, None,
0, None, 0, False)
xp_assert_equal(closed_new, self.closed_old)
def test_binary_erosion_noninteger_iterations(xp):
# regression test for gh-9905, gh-9909: ValueError for
# non integer iterations
data = xp.ones([1])
assert_raises(TypeError, ndimage.binary_erosion, data, iterations=0.5)
assert_raises(TypeError, ndimage.binary_erosion, data, iterations=1.5)
def test_binary_dilation_noninteger_iterations(xp):
# regression test for gh-9905, gh-9909: ValueError for
# non integer iterations
data = xp.ones([1])
assert_raises(TypeError, ndimage.binary_dilation, data, iterations=0.5)
assert_raises(TypeError, ndimage.binary_dilation, data, iterations=1.5)
def test_binary_opening_noninteger_iterations(xp):
# regression test for gh-9905, gh-9909: ValueError for
# non integer iterations
data = xp.ones([1])
assert_raises(TypeError, ndimage.binary_opening, data, iterations=0.5)
assert_raises(TypeError, ndimage.binary_opening, data, iterations=1.5)
def test_binary_closing_noninteger_iterations(xp):
# regression test for gh-9905, gh-9909: ValueError for
# non integer iterations
data = xp.ones([1])
assert_raises(TypeError, ndimage.binary_closing, data, iterations=0.5)
assert_raises(TypeError, ndimage.binary_closing, data, iterations=1.5)
@xfail_xp_backends(
"cupy", reason="CuPy: NotImplementedError: only brute_force iteration"
)
def test_binary_closing_noninteger_brute_force_passes_when_true(xp):
# regression test for gh-9905, gh-9909: ValueError for non integer iterations
data = xp.ones([1])
xp_assert_equal(ndimage.binary_erosion(data, iterations=2, brute_force=1.5),
ndimage.binary_erosion(data, iterations=2, brute_force=bool(1.5))
)
xp_assert_equal(ndimage.binary_erosion(data, iterations=2, brute_force=0.0),
ndimage.binary_erosion(data, iterations=2, brute_force=bool(0.0))
)
@skip_xp_backends(np_only=True, exceptions=["cupy"],
reason="inplace output= is numpy-specific")
@xfail_xp_backends("cupy", reason="NotImplementedError: only brute_force iteration")
@pytest.mark.parametrize(
'function',
['binary_erosion', 'binary_dilation', 'binary_opening', 'binary_closing'],
)
@pytest.mark.parametrize('iterations', [1, 5])
@pytest.mark.parametrize('brute_force', [False, True])
def test_binary_input_as_output(function, iterations, brute_force, xp):
rstate = np.random.RandomState(123)
data = rstate.randint(low=0, high=2, size=100).astype(bool)
data = xp.asarray(data)
ndi_func = getattr(ndimage, function)
# input data is not modified
data_orig = data.copy()
expected = ndi_func(data, brute_force=brute_force, iterations=iterations)
xp_assert_equal(data, data_orig)
# data should now contain the expected result
ndi_func(data, brute_force=brute_force, iterations=iterations, output=data)
xp_assert_equal(data, expected)
@skip_xp_backends(np_only=True, exceptions=["cupy"],
reason="inplace output= is numpy-specific")
def test_binary_hit_or_miss_input_as_output(xp):
rstate = np.random.RandomState(123)
data = rstate.randint(low=0, high=2, size=100).astype(bool)
data = xp.asarray(data)
# input data is not modified
data_orig = data.copy()
expected = ndimage.binary_hit_or_miss(data)
xp_assert_equal(data, data_orig)
# data should now contain the expected result
ndimage.binary_hit_or_miss(data, output=data)
xp_assert_equal(data, expected)
@xfail_xp_backends("cupy",
reason="CuPy does not have distance_transform_cdt")
def test_distance_transform_cdt_invalid_metric(xp):
msg = 'invalid metric provided'
with pytest.raises(ValueError, match=msg):
ndimage.distance_transform_cdt(xp.ones((5, 5)),
metric="garbage")