team-10/env/Lib/site-packages/transformers/models/bitnet/modular_bitnet.py
2025-08-02 07:34:44 +02:00

153 lines
5.6 KiB
Python

# coding=utf-8
# Copyright 2025 The BitNet Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
"""PyTorch BitNet model."""
from typing import Callable, Optional
import torch
from ...cache_utils import Cache
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import CausalLMOutputWithPast
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import logging
from ..gemma.modeling_gemma import GemmaMLP
from ..llama.modeling_llama import (
LlamaAttention,
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaModel,
LlamaRMSNorm,
apply_rotary_pos_emb,
eager_attention_forward,
)
from .configuration_bitnet import BitNetConfig
logger = logging.get_logger(__name__)
class BitNetRMSNorm(LlamaRMSNorm):
pass
class BitNetMLP(GemmaMLP):
def __init__(self, config: BitNetConfig):
super().__init__(config)
self.ffn_sub_norm = BitNetRMSNorm(config.intermediate_size, eps=config.rms_norm_eps)
def forward(self, x):
down_proj = self.down_proj(self.ffn_sub_norm(self.act_fn(self.gate_proj(x)) * self.up_proj(x)))
return down_proj
class BitNetAttention(LlamaAttention):
def __init__(self, config: BitNetConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.attn_sub_norm = BitNetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.attn_sub_norm(attn_output) # diff with Llama
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class BitNetDecoderLayer(LlamaDecoderLayer):
pass
class BitNetModel(LlamaModel):
pass
class BitNetForCausalLM(LlamaForCausalLM):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = None
_pp_plan = None
def forward(
self,
**super_kwargs,
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
Example:
```python
>>> from transformers import AutoTokenizer, BitNetForCausalLM
>>> model = BitNetForCausalLM.from_pretrained("microsoft/bitnet-b1.58-2B-4T")
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/bitnet-b1.58-2B-4T")
>>> prompt = f'<|begin_of_text|>User: Hey, are you conscious? Can you talk to me?<|eot_id|>Assistant: '
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=100)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"User: Hey, are you conscious? Can you talk to me?Assistant: No, I'm not conscious. I'm an artificial intelligence designed to assist with information and tasks. How can I help you today?"
```"""
return super().forward(**super_kwargs)
__all__ = [
"BitNetForCausalLM",
"BitNetModel",
"BitNetPreTrainedModel", # noqa: F822
]