team-10/env/Lib/site-packages/transformers/models/evolla/configuration_evolla.py
2025-08-02 07:34:44 +02:00

279 lines
14 KiB
Python

# coding=utf-8
# Copyright 2025 Westlake Representational Learning Lab (Fajie Yuan Lab) team and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evolla model configuration"""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
logger = logging.get_logger(__name__)
class SaProtConfig(PretrainedConfig):
r"""This is the configuration class to store the configuration of a [`EvollaSaProtProteinEncoder`]. It is used to instantiate a
SaProt model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 446):
Vocabulary size of the protein sequence model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`EvollaModel`].
mask_token_id (`int`, *optional*, defaults to 4):
The id of the *mask* token in the protein sequence model.
pad_token_id (`int`, *optional*, defaults to 1):
The id of the *padding* token in the protein sequence model.
hidden_size (`int`, *optional*, defaults to 1280):
Dimensionality of the protein sequence model layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 33):
Number of hidden layers in the protein sequence model.
num_attention_heads (`int`, *optional*, defaults to 20):
Number of attention heads for each attention layer in the protein sequence model.
intermediate_size (`int`, *optional*, defaults to 5120):
Dimensionality of the intermediate layers in the protein sequence model.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the hidden layers in the protein sequence model.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities in the protein sequence model.
max_position_embeddings (`int`, *optional*, defaults to 1026):
The maximum sequence length that the protein sequence model might ever be used with. Typically set this to
something large just in case (e.g., 512 or 1024 or 2048).
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon value for the layer normalization layer in the protein sequence model.
position_embedding_type (`str`, *optional*, defaults to `"rotary"`):
The type of position embedding to use in the protein sequence model. Currently only `"rotary"` is supported.
emb_layer_norm_before (`bool`, *optional*, defaults to `False`):
Whether to apply layer normalization before the position embedding in the protein sequence model.
token_dropout (`bool`, *optional*, defaults to `True`):
Whether to apply dropout to the tokens in the protein sequence model."""
def __init__(
self,
vocab_size=446,
mask_token_id=4,
pad_token_id=1,
hidden_size=1280,
num_hidden_layers=33,
num_attention_heads=20,
intermediate_size=5120,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=1026,
initializer_range=0.02,
layer_norm_eps=1e-05,
position_embedding_type="rotary",
use_cache=True,
emb_layer_norm_before=False,
token_dropout=True,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.emb_layer_norm_before = emb_layer_norm_before
self.token_dropout = token_dropout
class EvollaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`EvollaModel`]. It is used to instantiate an
Evolla model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Evolla-10B.
e.g. [westlake-repl/Evolla-10B-hf](https://huggingface.co/westlake-repl/Evolla-10B-hf)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
protein_encoder_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`SaProtConfig`].
vocab_size (`int`, *optional*, defaults to 128256):
Vocabulary size of the Evolla llama model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`EvollaModel`].
hidden_size (`int`, *optional*, defaults to 4096):
Dimensionality of the llama layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimensionality of the intermediate layers in the llama model.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the llama model.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the llama model.
num_key_value_heads (`int`, *optional*, defaults to 8):
Number of key-value pairs for each attention layer in the llama model.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the llama model. If string, `"gelu"`, `"relu"`,
`"selu"` and `"silu"` are supported.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon value for the RMS-norm layer in the llama model.
rope_theta (`float`, *optional*, defaults to 500000.0):
The threshold value for the RoPE layer in the llama model.
rope_scaling (`float`, *optional*):
The scaling factor for the RoPE layer in the llama model.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in the attention layer.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention layer.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in the MLP layer.
aligner_ffn_mult (`int`, *optional*, defaults to 4):
The FFN multiplier for the aligner layer.
aligner_enable_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in the aligner layer.
aligner_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities in the aligner layer.
aligner_num_add_layers (`int`, *optional*, defaults to 8):
The number of additional layers for the aligner layer.
resampler_depth (`int`, *optional*, defaults to 6):
The depth of the resampler layer in the llama model.
resampler_dim_head (`int`, *optional*, defaults to 64):
The dimension of the heads in the resampler layer in the llama model.
resampler_heads (`int`, *optional*, defaults to 8):
The number of heads in the resampler layer in the llama model.
resampler_num_latents (`int`, *optional*, defaults to 64):
The number of latents in the resampler layer in the llama model.
resampler_ff_mult (`int`, *optional*, defaults to 4):
The FFN multiplier for the resampler layer.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
bos_token_id (`int`, *optional*, defaults to 128000):
The id of the *beginning-of-sequence* token.
eos_token_id (`int`, *optional*, defaults to 128009):
The id of the *end-of-sequence* token.
use_cache (`bool`, *optional*, defaults to `False`):
Whether or not the model should return the last key/values attentions (not used by all models).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to tie the input and output word embeddings.
Example:
```python
>>> from transformers import EvollaModel, EvollaConfig
>>> # Initializing a Evolla evolla-10b style configuration
>>> configuration = EvollaConfig()
>>> # Initializing a model from the evolla-10b style configuration
>>> model = EvollaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "EvollaModel"
sub_configs = {"protein_encoder_config": SaProtConfig}
def __init__(
self,
protein_encoder_config=None,
vocab_size=128256, # llama vocab size
hidden_size=4096, # llama hidden size
intermediate_size=14336, # llama intermediate size
num_hidden_layers=32, # llama num layers
num_attention_heads=32, # llama num heads
num_key_value_heads=8, # llama num key-value heads
hidden_act="silu", # llama activation function
max_position_embeddings=8192, # llama rope max length
rms_norm_eps=1e-05,
rope_theta=500000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
aligner_ffn_mult=4,
aligner_enable_bias=True,
aligner_attention_probs_dropout_prob=0.1,
aligner_num_add_layers=8,
resampler_depth=6,
resampler_dim_head=64,
resampler_heads=8,
resampler_num_latents=64,
resampler_ff_mult=4,
initializer_range=0.02,
pad_token_id=None,
bos_token_id=128000,
eos_token_id=128009,
use_cache=False,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.rms_norm_eps = rms_norm_eps
self.tie_word_embeddings = tie_word_embeddings
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
self.aligner_ffn_mult = aligner_ffn_mult
self.aligner_enable_bias = aligner_enable_bias
self.aligner_attention_probs_dropout_prob = aligner_attention_probs_dropout_prob
self.aligner_num_add_layers = aligner_num_add_layers
self.use_cache = use_cache
self.initializer_range = initializer_range
self.resampler_depth = resampler_depth
self.resampler_dim_head = resampler_dim_head
self.resampler_heads = resampler_heads
self.resampler_num_latents = resampler_num_latents
self.resampler_ff_mult = resampler_ff_mult
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
# Subconfig
if protein_encoder_config is None:
protein_encoder_config = {}
logger.info("`protein_encoder_config` is `None`. Initializing the `SaProtConfig` with default values.")
self.protein_encoder_config = SaProtConfig(**protein_encoder_config)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["EvollaConfig"]