team-10/env/Lib/site-packages/transformers/models/janus/configuration_janus.py
2025-08-02 07:34:44 +02:00

322 lines
15 KiB
Python

# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/janus/modular_janus.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_janus.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 Deepseek AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING, AutoConfig
logger = logging.get_logger(__name__)
class JanusVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`JanusVisionModel`]. It is used to instantiate a
`JanusVisionModel` according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
image_size (`int`, *optional*, defaults to 384):
The size (resolution) of each image.
attention_dropout (`float`, *optional*, defaults to 0.0):
Dropout probability for attention weights.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"`, and `"gelu_new"` are supported.
mlp_ratio (`float`, *optional*, defaults to 4.0):
Ratio of MLP hidden dimensionality to embedding dimensionality.
attention_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys, and values in the attention layers.
hidden_dropout_rate (`float`, *optional*, defaults to 0.0):
The dropout probability for fully connected layers in the encoder.
projection_dim (`int`, *optional*, defaults to 2048):
Dimensionality of the MLP projection head.
projection_dropout (`float`, *optional*, defaults to 0.0):
Dropout probability for the projection layer.
use_qk_norm (`bool`, *optional*, defaults to `False`):
Whether to normalize the query and key matrices.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal initializer for initializing all weight matrices.
depth (`int`, *optional*, defaults to 2):
Number of hidden layers in the aligner module.
num_image_tokens (`int`, *optional*, defaults to 576):
Number of image tokens.
"""
model_type = "janus_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
num_channels=3,
patch_size=16,
image_size=384,
attention_dropout=0.0,
layer_norm_eps=1e-6,
hidden_act="gelu",
mlp_ratio=4.0,
attention_bias=True,
hidden_dropout_rate=0.0,
projection_dim=2048,
projection_dropout=0.0,
use_qk_norm=False,
initializer_range=0.02,
depth=2,
num_image_tokens=576,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.mlp_ratio = mlp_ratio
self.attention_bias = attention_bias
self.hidden_dropout_rate = hidden_dropout_rate
self.projection_dim = projection_dim
self.projection_dropout = projection_dropout
self.use_qk_norm = use_qk_norm
self.initializer_range = initializer_range
self.depth = depth
self.num_image_tokens = num_image_tokens
class JanusVQVAEConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`JanusVQVAEModel`]. It is used to instantiate a
`JanusVQVAEModel` according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. Instantiating a
configuration with the defaults will yield a similar configuration to the VQModel of the
[deepseek-community/Janus-Pro-1B](https://huggingface.co/deepseek-community/Janus-Pro-1B).
Args:
embed_dim (`int`, *optional*, defaults to 8):
Dimensionality of each embedding vector.
num_embeddings (`int`, *optional*, defaults to 16384):
Number of codebook embeddings.
double_latent (`bool`, *optional*, defaults to `False`):
Whether to use double z channels.
latent_channels (`int`, *optional*, defaults to 256):
Number of channels for the latent space.
num_patches (`int`, *optional*, defaults to 32):
Num of patches the input images can be divided into.
in_channels (`int`, *optional*, defaults to 3):
Number of input channels.
out_channels (`int`, *optional*, defaults to 3):
Number of out channels.
base_channels (`int`, *optional*, defaults to 128):
Base channel count.
channel_multiplier (`list[int]`, *optional*, defaults to `[1, 1, 2, 2, 4]`):
Channel multipliers for each resolution.
num_res_blocks (`int`, *optional*, defaults to 2):
Number of residual blocks.
dropout (`float`, *optional*, defaults to 0.0):
Dropout rate.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
projection_dim (`int`, *optional*, defaults to 2048):
Dimensionality of the MLP projection head.
num_hidden_layers (`int`, *optional*, defaults to 2):
Number of hidden layers in VAVAE MLP Connecter module.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
image_token_embed_dim (`int`, *optional*, defaults to 2048):
Dimension of image embeddings. It should be same as the dimensionality of text embeddings.
"""
model_type = "janus_vqgan"
base_config_key = "vq_config"
def __init__(
self,
embed_dim: int = 8,
num_embeddings: int = 16384,
double_latent: bool = False,
latent_channels: int = 256,
num_patches: int = 32,
in_channels: int = 3,
out_channels: int = 3,
base_channels: int = 128,
channel_multiplier: list[int] = [1, 1, 2, 2, 4],
num_res_blocks: int = 2,
dropout: float = 0.0,
initializer_range=0.02,
projection_dim=2048,
num_hidden_layers=2,
hidden_act="gelu",
image_token_embed_dim=2048,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_embeddings = num_embeddings
self.double_latent = double_latent
self.latent_channels = latent_channels
self.in_channels = in_channels
self.base_channels = base_channels
self.channel_multiplier = channel_multiplier
self.num_res_blocks = num_res_blocks
self.dropout = dropout
self.initializer_range = initializer_range
self.num_patches = num_patches
self.out_channels = out_channels
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.hidden_act = hidden_act
self.image_token_embed_dim = image_token_embed_dim
class JanusConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`JanusModel`]. It is used to instantiate an
Janus model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Janus-1B or Janus-7B models.
e.g. [deepseek-community/Janus-Pro-1B](https://huggingface.co/deepseek-community/Janus-Pro-1B) or
[deepseek-community/Janus-Pro-7B](https://huggingface.co/deepseek-community/Janus-Pro-7B)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
The config object or dictionary of the text backbone.
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `JanusVisionConfig`):
The config object or dictionary of the vision backbone.
vq_config (`Union[AutoConfig, dict]`, *optional*, defaults to `JanusVQVAEConfig`):
The config object or dictionary of the VQVAE backbone.
image_token_id (`int`, *optional*, defaults to 100581):
Token index of a placeholder image token.
Example:
```python
>>> from transformers import JanusForConditionalGeneration, JanusConfig, JanusVisionConfig, JanusVQVAEConfig, LlamaConfig
>>> # Initializing a Janus vision config
>>> vision_config = JanusVisionConfig()
>>> # Initializing a Llama config
>>> text_config = LlamaConfig()
>>> # Initializing a VQ config
>>> vq_config = JanusVQVAEConfig()
>>> # Initializing a Janus Pro 1B style configuration
>>> configuration = JanusConfig(vision_config=vision_config, text_config=text_config, vq_config=vq_config)
>>> # Initializing a model from the Janus Pro 1B style configuration
>>> model = JanusForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "janus"
sub_configs = {
"text_config": AutoConfig,
"vision_config": JanusVisionConfig,
"vq_config": JanusVQVAEConfig,
}
def __init__(
self,
text_config=None,
vision_config=None,
vq_config=None,
image_token_id=100581,
**kwargs,
):
if isinstance(text_config, dict):
text_config["model_type"] = text_config.get("model_type", "llama")
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
logger.info("`text_config` is None. Initializing with default values")
self.text_config = CONFIG_MAPPING["llama"]()
elif isinstance(text_config, PretrainedConfig):
self.text_config = text_config
else:
raise ValueError(
f"Invalid type for `text_config`. Must be either `dict` or `LlamaConfig`."
f" Type found: {type(text_config)}"
)
if vision_config is None:
logger.info("`vision_config` is None. Initializing with default JanusVisionConfig values")
self.vision_config = JanusVisionConfig()
elif isinstance(vision_config, dict):
self.vision_config = JanusVisionConfig(**vision_config)
elif isinstance(vision_config, JanusVisionConfig):
self.vision_config = vision_config
else:
raise ValueError(
f"Invalid type for `vision_config`. Must be either `dict` or `JanusVisionConfig`."
f" Type found: {type(vision_config)}"
)
if vq_config is None:
logger.info("`vq_config` is None. Initializing with default JanusVQVAEConfig values")
self.vq_config = JanusVQVAEConfig()
elif isinstance(vq_config, dict):
self.vq_config = JanusVQVAEConfig(**vq_config)
elif isinstance(vq_config, JanusVQVAEConfig):
self.vq_config = vq_config
else:
raise ValueError(
f"Invalid type for `vq_config`. Must be either `dict` or `JanusVQVAEConfig`."
f" Type found: {type(vq_config)}"
)
self.initializer_range = self.vision_config.initializer_range
# This dimension is required when decoding discrete image tokens to continuous input.
self.vq_config.num_patches = self.vision_config.image_size // self.vision_config.patch_size
# The default is only the index for the 1B model, 7B uses a different one
self.image_token_id = image_token_id
super().__init__(**kwargs)
__all__ = ["JanusVQVAEConfig", "JanusVisionConfig", "JanusConfig"]