201 lines
10 KiB
Python
201 lines
10 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""PyTorch Phi-MoE model."""
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...modeling_rope_utils import rope_config_validation
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class PhimoeConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`PhimoeModel`]. It is used to instantiate a Phi-moe
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the
|
|
[microsoft/Phi-3.5-MoE-instruct](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct).
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 32064):
|
|
Vocabulary size of the Phimoe model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`PhimoeModel`]
|
|
hidden_size (`int`, *optional*, defaults to 4096):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 6400):
|
|
Dimension of the MLP representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
num_key_value_heads (`int`, *optional*, defaults to 8):
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
|
by meanpooling all the original heads within that group. For more details, check out [this
|
|
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
|
The non-linear activation function (function or string) in the decoder.
|
|
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
|
The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
|
|
allows sequence of up to 4096*32 tokens.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
pad_token_id (`int`, *optional*):
|
|
The id of the padding token.
|
|
bos_token_id (`int`, *optional*, defaults to 1):
|
|
The id of the "beginning-of-sequence" token.
|
|
eos_token_id (`int`, *optional*, defaults to 2):
|
|
The id of the "end-of-sequence" token.
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
Whether the model's input and output word embeddings should be tied.
|
|
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
|
The base period of the RoPE embeddings.
|
|
rope_scaling (`dict`, *optional*):
|
|
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
|
contain the following keys: `type`, `short_factor`, `long_factor`, `short_mscale`, `long_mscale` and
|
|
`original_max_position_embeddings`. The `type` must be `longrope`, the `short_mscale` and `long_scale` must
|
|
be numbers, the `short_factor` and `long_factor` must be lists of numbers with the same length as half of
|
|
the attention head size and the `original_max_position_embeddings` must be an integer.
|
|
sliding_window (`int`, *optional*):
|
|
Sliding window attention window size. If not specified, will default to `262144`.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
|
The number of experts to root per-token, can be also interpreted as the `top-p` routing
|
|
parameter
|
|
num_local_experts (`int`, *optional*, defaults to 16):
|
|
Number of experts per Sparse MLP layer.
|
|
output_router_logits (`bool`, *optional*, defaults to `False`):
|
|
Whether or not the router logits should be returned by the model. Enabling this will also
|
|
allow the model to output the auxiliary loss. See [here]() for more details
|
|
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
|
The aux loss factor for the total loss.
|
|
router_jitter_noise (`float`, *optional*, defaults to 0.01):
|
|
Amount of noise to add to the router.
|
|
input_jitter_noise (`float`, *optional*, defaults to 0.0): Input jitter noise
|
|
attention_bias (`bool`, *optional*, defaults to `False`): Attention bias
|
|
lm_head_bias (`bool`, *optional*, defaults to `False`): LM head bias
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import PhimoeModel, PhimoeConfig
|
|
>>> # Initializing a Phi-3 style configuration
|
|
>>> configuration = PhimoeConfig.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
|
|
>>> # Initializing a model from the configuration
|
|
>>> model = PhimoeModel(configuration)
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "phimoe"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=32064,
|
|
hidden_size=4096,
|
|
intermediate_size=6400,
|
|
num_hidden_layers=32,
|
|
num_attention_heads=32,
|
|
num_key_value_heads=8,
|
|
hidden_act="silu",
|
|
max_position_embeddings=4096 * 32,
|
|
initializer_range=0.02,
|
|
rms_norm_eps=1e-5,
|
|
use_cache=True,
|
|
pad_token_id=None,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
tie_word_embeddings=False,
|
|
rope_theta=1e6,
|
|
rope_scaling=None,
|
|
sliding_window=None,
|
|
attention_dropout=0.0,
|
|
num_experts_per_tok=2,
|
|
num_local_experts=16,
|
|
output_router_logits=False,
|
|
router_aux_loss_coef=0.001,
|
|
router_jitter_noise=0.01,
|
|
input_jitter_noise=0.0,
|
|
attention_bias=False,
|
|
lm_head_bias=False,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.sliding_window = sliding_window
|
|
self.attention_bias = attention_bias
|
|
self.lm_head_bias = lm_head_bias
|
|
# for backward compatibility
|
|
if num_key_value_heads is None:
|
|
num_key_value_heads = num_attention_heads
|
|
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.use_cache = use_cache
|
|
self.rope_theta = rope_theta
|
|
self.attention_dropout = attention_dropout
|
|
|
|
self.num_experts_per_tok = num_experts_per_tok
|
|
self.num_local_experts = num_local_experts
|
|
self.output_router_logits = output_router_logits
|
|
self.router_aux_loss_coef = router_aux_loss_coef
|
|
self.router_jitter_noise = router_jitter_noise
|
|
self.input_jitter_noise = input_jitter_noise
|
|
|
|
self.rope_scaling = rope_scaling
|
|
if isinstance(self.rope_scaling, dict):
|
|
if "rope_type" not in self.rope_scaling:
|
|
self.rope_scaling["rope_type"] = self.rope_scaling.get("type", None)
|
|
if "original_max_position_embeddings" in self.rope_scaling:
|
|
self.original_max_position_embeddings = self.rope_scaling["original_max_position_embeddings"]
|
|
rope_scaling_short_mscale = self.rope_scaling.get("short_mscale", None)
|
|
rope_scaling_long_mscale = self.rope_scaling.get("long_mscale", None)
|
|
if not isinstance(rope_scaling_short_mscale, (int, float)):
|
|
raise TypeError(
|
|
f"`rope_scaling`'s short_mscale field must be a number, got {rope_scaling_short_mscale}"
|
|
)
|
|
if not isinstance(rope_scaling_long_mscale, (int, float)):
|
|
raise TypeError(f"`rope_scaling`'s long_mscale field must be a number, got {rope_scaling_long_mscale}")
|
|
|
|
rope_config_validation(self)
|
|
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
__all__ = ["PhimoeConfig"]
|