team-10/env/Lib/site-packages/transformers/models/shieldgemma2/modeling_shieldgemma2.py
2025-08-02 07:34:44 +02:00

149 lines
6 KiB
Python

# coding=utf-8
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional, Union
import torch
import torch.utils.checkpoint
from ...cache_utils import Cache
from ...modeling_outputs import ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import (
auto_docstring,
logging,
)
from ..auto import AutoModelForImageTextToText
from .configuration_shieldgemma2 import ShieldGemma2Config
logger = logging.get_logger(__name__)
@dataclass
class ShieldGemma2ImageClassifierOutputWithNoAttention(ImageClassifierOutputWithNoAttention):
"""ShieldGemma2 classifies imags as violative or not relative to a specific policy
Args:
"""
probabilities: Optional[torch.Tensor] = None
@auto_docstring
class ShieldGemma2ForImageClassification(PreTrainedModel):
config: ShieldGemma2Config
_checkpoint_conversion_mapping = {
"model.language_model.model": "model.model.language_model",
"model.vision_tower": "model.model.vision_tower",
"model.multi_modal_projector": "model.model.multi_modal_projector",
"model.language_model.lm_head": "model.lm_head",
}
def __init__(self, config: ShieldGemma2Config):
super().__init__(config=config)
self.yes_token_index = getattr(config, "yes_token_index", 10_784)
self.no_token_index = getattr(config, "no_token_index", 3771)
self.model = AutoModelForImageTextToText.from_config(config=config)
def get_input_embeddings(self):
return self.model.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.model.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.model.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.model.language_model.set_decoder(decoder)
def get_decoder(self):
return self.model.language_model.get_decoder()
def tie_weights(self):
return self.model.language_model.tie_weights()
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None,
token_type_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**lm_kwargs,
) -> ShieldGemma2ImageClassifierOutputWithNoAttention:
r"""
Returns:
A `ShieldGemma2ImageClassifierOutputWithNoAttention` instance containing the logits and probabilities
associated with the model predicting the `Yes` or `No` token as the response to that prompt, captured in the
following properties.
* `logits` (`torch.Tensor` of shape `(batch_size, 2)`):
The first position along dim=1 is the logits for the `Yes` token and the second position along dim=1 is
the logits for the `No` token.
* `probabilities` (`torch.Tensor` of shape `(batch_size, 2)`):
The first position along dim=1 is the probability of predicting the `Yes` token and the second position
along dim=1 is the probability of predicting the `No` token.
ShieldGemma prompts are constructed such that predicting the `Yes` token means the content *does violate* the
policy as described. If you are only interested in the violative condition, use
`violated = outputs.probabilities[:, 1]` to extract that slice from the output tensors.
When used with the `ShieldGemma2Processor`, the `batch_size` will be equal to `len(images) * len(policies)`,
and the order within the batch will be img1_policy1, ... img1_policyN, ... imgM_policyN.
"""
outputs = self.model(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
token_type_ids=token_type_ids,
cache_position=cache_position,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
logits_to_keep=logits_to_keep,
**lm_kwargs,
)
logits = outputs.logits
selected_logits = logits[:, -1, [self.yes_token_index, self.no_token_index]]
probabilities = torch.softmax(selected_logits, dim=-1)
return ShieldGemma2ImageClassifierOutputWithNoAttention(
logits=selected_logits,
probabilities=probabilities,
)
__all__ = [
"ShieldGemma2ForImageClassification",
]