UPLOAD
This commit is contained in:
parent
efba4c33ba
commit
5145c42632
30 changed files with 1270 additions and 5 deletions
534
test2/script.py
534
test2/script.py
|
@ -1,534 +0,0 @@
|
|||
import openmeteo_requests
|
||||
import pandas as pd
|
||||
import requests_cache
|
||||
from retry_requests import retry
|
||||
from datetime import datetime, timedelta
|
||||
from PIL import Image
|
||||
import torch
|
||||
from diffusers import StableDiffusionInstructPix2PixPipeline
|
||||
import numpy as np
|
||||
import geocoder
|
||||
|
||||
class PlantPredictor:
|
||||
def __init__(self):
|
||||
"""Initialize the plant prediction pipeline with Open-Meteo client"""
|
||||
# Setup the Open-Meteo API client with cache and retry on error
|
||||
cache_session = requests_cache.CachedSession('.cache', expire_after=3600)
|
||||
retry_session = retry(cache_session, retries=5, backoff_factor=0.2)
|
||||
self.openmeteo = openmeteo_requests.Client(session=retry_session)
|
||||
|
||||
self.image_model = None
|
||||
|
||||
def get_current_location(self):
|
||||
"""Get current location using IP geolocation"""
|
||||
try:
|
||||
g = geocoder.ip('me')
|
||||
if g.ok:
|
||||
print(f"📍 Location detected: {g.city}, {g.country}")
|
||||
print(f"📍 Coordinates: {g.latlng[0]:.4f}, {g.latlng[1]:.4f}")
|
||||
return g.latlng[0], g.latlng[1] # lat, lon
|
||||
else:
|
||||
print("⚠️ Could not detect location, using default (Milan)")
|
||||
self.image_model = None
|
||||
except Exception as e:
|
||||
print(f"⚠️ Location detection failed: {e}, using default (Milan)")
|
||||
|
||||
self.image_model = None
|
||||
|
||||
def load_image_model(self):
|
||||
"""Load the image transformation model with high-quality settings"""
|
||||
print("🔄 Loading Stable Diffusion model with high-quality settings...")
|
||||
|
||||
# Check if CUDA is available and print GPU info
|
||||
if torch.cuda.is_available():
|
||||
gpu_name = torch.cuda.get_device_name(0)
|
||||
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
|
||||
print(f"🚀 GPU: {gpu_name} ({gpu_memory:.1f} GB)")
|
||||
|
||||
self.image_model = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
||||
"timbrooks/instruct-pix2pix",
|
||||
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
||||
use_safetensors=True,
|
||||
safety_checker=None,
|
||||
requires_safety_checker=False
|
||||
)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
self.image_model = self.image_model.to("cuda")
|
||||
|
||||
# Enable memory efficient attention for better quality
|
||||
try:
|
||||
self.image_model.enable_xformers_memory_efficient_attention()
|
||||
print("✅ XFormers memory efficient attention enabled")
|
||||
except:
|
||||
print("⚠️ XFormers not available, using standard attention")
|
||||
|
||||
# Enable VAE slicing for higher resolution support
|
||||
self.image_model.enable_vae_slicing()
|
||||
print("✅ VAE slicing enabled for high-res support")
|
||||
|
||||
# Enable attention slicing for memory efficiency
|
||||
self.image_model.enable_attention_slicing(1)
|
||||
print("✅ Attention slicing enabled")
|
||||
|
||||
print("✅ High-quality model loaded successfully!")
|
||||
|
||||
def get_weather_forecast(self, lat, lon, days=7):
|
||||
"""Get weather forecast from Open-Meteo API using official client"""
|
||||
|
||||
start_date = datetime.now().strftime("%Y-%m-%d")
|
||||
end_date = (datetime.now() + timedelta(days=days)).strftime("%Y-%m-%d")
|
||||
|
||||
url = "https://api.open-meteo.com/v1/forecast"
|
||||
params = {
|
||||
"latitude": lat,
|
||||
"longitude": lon,
|
||||
"daily": [
|
||||
"temperature_2m_max",
|
||||
"temperature_2m_min",
|
||||
"precipitation_sum",
|
||||
"rain_sum",
|
||||
"uv_index_max",
|
||||
"sunshine_duration"
|
||||
],
|
||||
"start_date": start_date,
|
||||
"end_date": end_date,
|
||||
"timezone": "auto"
|
||||
}
|
||||
|
||||
try:
|
||||
responses = self.openmeteo.weather_api(url, params=params)
|
||||
response = responses[0] # Process first location
|
||||
|
||||
print(f"Coordinates: {response.Latitude()}°N {response.Longitude()}°E")
|
||||
print(f"Elevation: {response.Elevation()} m asl")
|
||||
print(f"Timezone: UTC{response.UtcOffsetSeconds()//3600:+d}")
|
||||
|
||||
# Process daily data
|
||||
daily = response.Daily()
|
||||
|
||||
# Extract data as numpy arrays (much faster!)
|
||||
daily_data = {
|
||||
"date": pd.date_range(
|
||||
start=pd.to_datetime(daily.Time(), unit="s", utc=True),
|
||||
end=pd.to_datetime(daily.TimeEnd(), unit="s", utc=True),
|
||||
freq=pd.Timedelta(seconds=daily.Interval()),
|
||||
inclusive="left"
|
||||
),
|
||||
"temperature_2m_max": daily.Variables(0).ValuesAsNumpy(),
|
||||
"temperature_2m_min": daily.Variables(1).ValuesAsNumpy(),
|
||||
"precipitation_sum": daily.Variables(2).ValuesAsNumpy(),
|
||||
"rain_sum": daily.Variables(3).ValuesAsNumpy(),
|
||||
"uv_index_max": daily.Variables(4).ValuesAsNumpy(),
|
||||
"sunshine_duration": daily.Variables(5).ValuesAsNumpy()
|
||||
}
|
||||
|
||||
# Create DataFrame for easy analysis
|
||||
daily_dataframe = pd.DataFrame(data=daily_data)
|
||||
|
||||
return daily_dataframe, response
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error fetching weather data: {e}")
|
||||
return None, None
|
||||
|
||||
def analyze_weather_for_plants(self, weather_df):
|
||||
"""Analyze weather data and create plant-specific metrics"""
|
||||
|
||||
if weather_df is None or weather_df.empty:
|
||||
return None
|
||||
|
||||
# Handle NaN values by filling with 0 or mean
|
||||
weather_df = weather_df.fillna(0)
|
||||
|
||||
# Calculate plant-relevant metrics using pandas (more efficient)
|
||||
plant_conditions = {
|
||||
"avg_temp_max": round(weather_df['temperature_2m_max'].mean(), 1),
|
||||
"avg_temp_min": round(weather_df['temperature_2m_min'].mean(), 1),
|
||||
"total_precipitation": round(weather_df['precipitation_sum'].sum(), 1),
|
||||
"total_rain": round(weather_df['rain_sum'].sum(), 1),
|
||||
"total_sunshine_hours": round(weather_df['sunshine_duration'].sum() / 3600, 1), # Convert to hours
|
||||
"max_uv_index": round(weather_df['uv_index_max'].max(), 1),
|
||||
"days_analyzed": len(weather_df),
|
||||
"temp_range": round(weather_df['temperature_2m_max'].max() - weather_df['temperature_2m_min'].min(), 1)
|
||||
}
|
||||
|
||||
return plant_conditions
|
||||
|
||||
def create_transformation_prompt(self, image_path, plant_conditions):
|
||||
"""Create a detailed prompt for image transformation based on weather AND image analysis"""
|
||||
|
||||
if not plant_conditions:
|
||||
return "Show this plant after one week of growth", "generic plant", "unknown health"
|
||||
|
||||
# STEP 3A: Analyze original image
|
||||
plant_type = "generic plant"
|
||||
plant_health = "unknown health"
|
||||
|
||||
try:
|
||||
image = Image.open(image_path).convert("RGB")
|
||||
# Basic image analysis
|
||||
width, height = image.size
|
||||
aspect_ratio = width / height
|
||||
|
||||
# Simple plant type detection based on image characteristics
|
||||
plant_type = self.detect_plant_type(image)
|
||||
plant_health = self.assess_plant_health(image)
|
||||
|
||||
print(f"📸 Image Analysis:")
|
||||
print(f" Plant type detected: {plant_type}")
|
||||
print(f" Current health: {plant_health}")
|
||||
print(f" Image size: {width}x{height}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Warning: Could not analyze image: {e}")
|
||||
plant_type = "generic plant"
|
||||
plant_health = "healthy"
|
||||
|
||||
# STEP 3B: Weather analysis with plant-specific logic
|
||||
temp_avg = (plant_conditions['avg_temp_max'] + plant_conditions['avg_temp_min']) / 2
|
||||
|
||||
# Temperature effects (adjusted by plant type)
|
||||
if plant_type == "basil" or "herb" in plant_type:
|
||||
if temp_avg > 25:
|
||||
temp_effect = "warm weather promoting vigorous basil growth with larger, aromatic leaves and bushier structure"
|
||||
elif temp_avg < 15:
|
||||
temp_effect = "cool weather slowing basil growth with smaller, less vibrant leaves"
|
||||
else:
|
||||
temp_effect = "optimal temperature for basil supporting steady growth with healthy green foliage"
|
||||
else:
|
||||
if temp_avg > 25:
|
||||
temp_effect = "warm weather promoting vigorous growth with larger, darker green leaves"
|
||||
elif temp_avg < 10:
|
||||
temp_effect = "cool weather slowing growth with smaller, pale leaves"
|
||||
else:
|
||||
temp_effect = "moderate temperature supporting steady growth with healthy green foliage"
|
||||
|
||||
# Water effects
|
||||
if plant_conditions['total_rain'] > 20:
|
||||
water_effect = "abundant rainfall keeping leaves lush, turgid and deep green"
|
||||
elif plant_conditions['total_rain'] < 5:
|
||||
water_effect = "dry conditions causing slight leaf wilting and browning at edges"
|
||||
else:
|
||||
water_effect = "adequate moisture maintaining crisp, healthy leaf appearance"
|
||||
|
||||
# Sunlight effects
|
||||
if plant_conditions['total_sunshine_hours'] > 50:
|
||||
sun_effect = "plenty of sunlight encouraging dense, compact foliage growth"
|
||||
elif plant_conditions['total_sunshine_hours'] < 20:
|
||||
sun_effect = "limited sunlight causing elongated stems and sparse leaf growth"
|
||||
else:
|
||||
sun_effect = "moderate sunlight supporting balanced, proportional growth"
|
||||
|
||||
# UV effects
|
||||
if plant_conditions['max_uv_index'] > 7:
|
||||
uv_effect = "high UV causing slight leaf thickening and waxy appearance"
|
||||
else:
|
||||
uv_effect = "moderate UV maintaining normal leaf texture"
|
||||
|
||||
# STEP 3C: Create comprehensive prompt combining image + weather analysis
|
||||
|
||||
|
||||
# // FINAL PROMT HERE FOR PLANT
|
||||
|
||||
|
||||
prompt = f"""Transform this {plant_type} showing realistic growth after {plant_conditions['days_analyzed']} days. The plant should still be realistic and its surrounding how it would look like in the real world and a human should be able to say the picture looks normal and only focus on the plant. Current state: {plant_health}. Apply these weather effects: {temp_effect}, {water_effect}, {sun_effect}, and {uv_effect}. Show natural changes in leaf size, color saturation, stem thickness, and overall plant structure while maintaining the original composition and lighting. Weather summary: {plant_conditions['avg_temp_min']}-{plant_conditions['avg_temp_max']}°C, {plant_conditions['total_rain']}mm rain, {plant_conditions['total_sunshine_hours']}h sun"""
|
||||
return prompt, plant_type, plant_health
|
||||
|
||||
def detect_plant_type(self, image):
|
||||
"""Simple plant type detection based on image characteristics"""
|
||||
# This is a simplified version - in a real app you'd use a plant classification model
|
||||
# For now, we'll do basic analysis
|
||||
|
||||
# Convert to array for analysis
|
||||
img_array = np.array(image)
|
||||
|
||||
# Analyze color distribution
|
||||
green_pixels = np.sum((img_array[:,:,1] > img_array[:,:,0]) & (img_array[:,:,1] > img_array[:,:,2]))
|
||||
total_pixels = img_array.shape[0] * img_array.shape[1]
|
||||
green_ratio = green_pixels / total_pixels
|
||||
|
||||
# Simple heuristics (could be improved with ML)
|
||||
if green_ratio > 0.4:
|
||||
return "basil" # Assume basil for high green content
|
||||
else:
|
||||
return "generic plant"
|
||||
|
||||
def assess_plant_health(self, image):
|
||||
"""Assess basic plant health from image"""
|
||||
img_array = np.array(image)
|
||||
|
||||
# Analyze brightness and color vibrancy
|
||||
brightness = np.mean(img_array)
|
||||
green_channel = np.mean(img_array[:,:,1])
|
||||
|
||||
if brightness > 150 and green_channel > 120:
|
||||
return "healthy and vibrant"
|
||||
elif brightness > 100 and green_channel > 80:
|
||||
return "moderately healthy"
|
||||
else:
|
||||
return "showing some stress"
|
||||
|
||||
def transform_plant_image(self, image_path, prompt, num_samples=1):
|
||||
"""STEP 4: Generate ULTRA HIGH-QUALITY image with 60 inference steps"""
|
||||
|
||||
if self.image_model is None:
|
||||
self.load_image_model()
|
||||
|
||||
try:
|
||||
# Load and prepare image with HIGHER RESOLUTION
|
||||
print(f"📸 Loading image for high-quality processing: {image_path}")
|
||||
image = Image.open(image_path).convert("RGB")
|
||||
original_size = image.size
|
||||
|
||||
# Use HIGHER resolution for better quality (up to 1024x1024)
|
||||
max_size = 1024 # Increased from 512 for better quality
|
||||
if max(image.size) < max_size:
|
||||
# Upscale smaller images for better quality
|
||||
scale_factor = max_size / max(image.size)
|
||||
new_size = (int(image.size[0] * scale_factor), int(image.size[1] * scale_factor))
|
||||
image = image.resize(new_size, Image.Resampling.LANCZOS)
|
||||
print(f"📈 Upscaled image from {original_size} to {image.size} for better quality")
|
||||
elif max(image.size) > max_size:
|
||||
# Resize but maintain higher resolution
|
||||
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
||||
print(f"📏 Resized image from {original_size} to {image.size}")
|
||||
|
||||
print(f"🎨 Generating 1 ULTRA HIGH-QUALITY sample with 60 inference steps...")
|
||||
print(f"📝 Using enhanced prompt: {prompt[:120]}...")
|
||||
|
||||
generated_images = []
|
||||
|
||||
# Clear GPU cache before generation
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
for i in range(num_samples):
|
||||
print(f"🔄 Generating ultra high-quality sample {i+1}/{num_samples} with 60 steps...")
|
||||
|
||||
# Use different seeds for variety
|
||||
seed = 42 + i * 137 # Prime number spacing for better variety
|
||||
generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
|
||||
|
||||
# ULTRA HIGH-QUALITY SETTINGS (60 steps for maximum quality)
|
||||
result = self.image_model(
|
||||
prompt,
|
||||
image=image,
|
||||
num_inference_steps=40, # Increased to 60 for ultra high quality
|
||||
image_guidance_scale=2.0, # Increased from 1.5 for stronger conditioning
|
||||
guidance_scale=9.0, # Increased from 7.5 for better prompt following
|
||||
generator=generator,
|
||||
eta=0.0, # Deterministic for better quality
|
||||
# Add additional quality parameters
|
||||
).images[0]
|
||||
|
||||
generated_images.append(result)
|
||||
print(f"✅ Ultra high-quality sample {i+1} completed with 60 inference steps!")
|
||||
|
||||
# Clean up GPU memory between generations
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
print(f"🎉 Ultra high-quality sample generated with 60 inference steps!")
|
||||
return generated_images
|
||||
|
||||
except torch.cuda.OutOfMemoryError:
|
||||
print("❌ GPU out of memory! Try reducing num_samples or image resolution")
|
||||
print("💡 Current settings are optimized for high-end GPUs")
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
return None
|
||||
except Exception as e:
|
||||
print(f"❌ Error transforming image: {e}")
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
return None
|
||||
|
||||
def predict_plant_growth(self, image_path, lat=None, lon=None, output_path="predicted_plant.jpg", days=7, num_samples=1, high_quality=True):
|
||||
"""Complete ULTRA HIGH-QUALITY pipeline with 60 inference steps for maximum quality"""
|
||||
|
||||
# Auto-detect location if not provided
|
||||
if lat is None or lon is None:
|
||||
print("🌍 Auto-detecting location...")
|
||||
lat, lon = self.get_current_location()
|
||||
|
||||
print(f"🌱 Starting ULTRA HIGH-QUALITY plant prediction for coordinates: {lat:.4f}, {lon:.4f}")
|
||||
print(f"📅 Analyzing {days} days of weather data...")
|
||||
print(f"🎯 Generating 1 ultra high-quality sample with 60 inference steps")
|
||||
print(f"⚠️ This will take longer but produce maximum quality results")
|
||||
|
||||
# Step 1: Get weather data using official Open-Meteo client
|
||||
print("🌤️ Fetching weather data with caching and retry...")
|
||||
weather_df, response_info = self.get_weather_forecast(lat, lon, days)
|
||||
|
||||
if weather_df is None:
|
||||
print("❌ Failed to get weather data")
|
||||
return None
|
||||
|
||||
print(f"✅ Weather data retrieved for {len(weather_df)} days")
|
||||
print("\n📊 Weather Overview:")
|
||||
print(weather_df[['date', 'temperature_2m_max', 'temperature_2m_min', 'precipitation_sum', 'sunshine_duration']].head())
|
||||
|
||||
# Step 2: Analyze weather for plants
|
||||
plant_conditions = self.analyze_weather_for_plants(weather_df)
|
||||
print(f"\n🔬 Plant-specific weather analysis: {plant_conditions}")
|
||||
|
||||
# Step 3: Analyze image + weather to create intelligent prompt
|
||||
print("\n🧠 STEP 3: Advanced image analysis and prompt creation...")
|
||||
try:
|
||||
prompt, plant_type, plant_health = self.create_transformation_prompt(image_path, plant_conditions)
|
||||
print(f"🌿 Plant identified as: {plant_type}")
|
||||
print(f"💚 Current health: {plant_health}")
|
||||
print(f"📝 Enhanced transformation prompt: {prompt}")
|
||||
except Exception as e:
|
||||
print(f"❌ Error in Step 3: {e}")
|
||||
return None
|
||||
|
||||
# Step 4: Generate ULTRA HIGH-QUALITY transformed image
|
||||
print(f"\n STEP 4: Generating 1 prediction with 60 inference steps...")
|
||||
print(" This may take 5-8 minutes for absolute maximum quality...")
|
||||
|
||||
import time
|
||||
start_time = time.time()
|
||||
|
||||
try:
|
||||
result_images = self.transform_plant_image(image_path, prompt, num_samples=num_samples)
|
||||
except Exception as e:
|
||||
print(f" Error in Step 4: {e}")
|
||||
return None
|
||||
|
||||
end_time = time.time()
|
||||
total_time = end_time - start_time
|
||||
|
||||
if result_images and len(result_images) > 0:
|
||||
# Save the ultra high-quality result
|
||||
saved_paths = []
|
||||
|
||||
# Save with maximum quality JPEG settings
|
||||
result_images[0].save(output_path, "JPEG", quality=98, optimize=True)
|
||||
saved_paths.append(output_path)
|
||||
print(f" prediction saved to: {output_path}")
|
||||
|
||||
# Create comparison with original
|
||||
self.create_comparison_grid(image_path, result_images, f"{output_path.replace('.jpg', '')}_comparison.jpg")
|
||||
|
||||
print(f"⏱️ Total generation time: {total_time:.1f} seconds")
|
||||
print(f"🏆 Generated with 60 inference steps for maximum quality!")
|
||||
|
||||
# GPU memory usage info
|
||||
if torch.cuda.is_available():
|
||||
memory_used = torch.cuda.max_memory_allocated() / 1024**3
|
||||
print(f" Peak GPU memory usage: {memory_used:.2f} GB")
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
||||
return result_images, plant_conditions, weather_df, plant_type, plant_health, saved_paths
|
||||
else:
|
||||
print(" Failed to generate image")
|
||||
return None
|
||||
|
||||
def create_comparison_grid(self, original_path, generated_images, output_path):
|
||||
"""Create a comparison grid"""
|
||||
try:
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
# Load original
|
||||
original = Image.open(original_path).convert("RGB")
|
||||
|
||||
# Use higher resolution for grid
|
||||
target_size = (512, 512)
|
||||
original = original.resize(target_size, Image.Resampling.LANCZOS)
|
||||
resized_generated = [img.resize(target_size, Image.Resampling.LANCZOS) for img in generated_images]
|
||||
|
||||
# Calculate grid
|
||||
total_images = len(generated_images) + 1
|
||||
cols = min(3, total_images) # 3 columns max for better layout
|
||||
rows = (total_images + cols - 1) // cols
|
||||
|
||||
# Create high-quality grid
|
||||
grid_width = cols * target_size[0]
|
||||
grid_height = rows * target_size[1] + 80 # More space for labels
|
||||
grid_image = Image.new('RGB', (grid_width, grid_height), 'white')
|
||||
|
||||
# Add images
|
||||
grid_image.paste(original, (0, 80))
|
||||
for i, img in enumerate(resized_generated):
|
||||
col = (i + 1) % cols
|
||||
row = (i + 1) // cols
|
||||
x = col * target_size[0]
|
||||
y = row * target_size[1] + 80
|
||||
grid_image.paste(img, (x, y))
|
||||
|
||||
# Add labels
|
||||
try:
|
||||
draw = ImageDraw.Draw(grid_image)
|
||||
try:
|
||||
font = ImageFont.truetype("arial.ttf", 32) # Larger font
|
||||
except:
|
||||
font = ImageFont.load_default()
|
||||
|
||||
draw.text((10, 20), "Original", fill='black', font=font)
|
||||
for i in range(len(resized_generated)):
|
||||
col = (i + 1) % cols
|
||||
x = col * target_size[0] + 10
|
||||
draw.text((x, 20), f"HQ Sample {i+1}", fill='black', font=font)
|
||||
except:
|
||||
pass
|
||||
|
||||
# Save with high quality
|
||||
grid_image.save(output_path, "JPEG", quality=95, optimize=True)
|
||||
print(f" High-quality comparison grid saved to: {output_path}")
|
||||
|
||||
except Exception as e:
|
||||
print(f" Could not create comparison grid: {e}")
|
||||
|
||||
# Example usage - HIGH QUALITY MODE
|
||||
if __name__ == "__main__":
|
||||
# Initialize predictor
|
||||
predictor = PlantPredictor()
|
||||
|
||||
# Example coordinates (Milan, Italy)
|
||||
latitude = 45.4642
|
||||
longitude = 9.1900
|
||||
|
||||
print(" Starting ULTRA HIGH-QUALITY plant prediction with 60 inference steps...")
|
||||
print(" This will use maximum GPU power and time for absolute best quality")
|
||||
|
||||
# Ultra high-quality prediction with single sample
|
||||
result = predictor.predict_plant_growth(
|
||||
image_path="./foto/basilico.jpg",
|
||||
lat=latitude,
|
||||
lon=longitude,
|
||||
output_path="./predicted_plant_ultra_hq.jpg",
|
||||
days=7,
|
||||
num_samples=1, # Single ultra high-quality sample
|
||||
high_quality=True
|
||||
)
|
||||
|
||||
if result:
|
||||
images, conditions, weather_data, plant_type, plant_health, saved_paths = result
|
||||
print("\n" + "="*60)
|
||||
print("🎉 PLANT PREDICTION COMPLETED!")
|
||||
print("="*60)
|
||||
print(f"🌿 Plant type: {plant_type}")
|
||||
print(f"💚 Plant health: {plant_health}")
|
||||
print(f"🎯 Generated 1 ultra high-quality sample with 60 inference steps")
|
||||
print(f"📊 Weather data points: {weather_data.shape}")
|
||||
print(f"🌡️ Temperature range: {conditions['avg_temp_min']}°C to {conditions['avg_temp_max']}°C")
|
||||
print(f"🌧️ Total precipitation: {conditions['total_rain']}mm")
|
||||
print(f"☀️ Sunshine hours: {conditions['total_sunshine_hours']}h")
|
||||
|
||||
print(f"\n💾 Saved files:")
|
||||
print(f" 📸 Ultra HQ prediction: ./predicted_plant_ultra_hq.jpg")
|
||||
print(f" 📊 Comparison image: ./predicted_plant_ultra_hq_comparison.jpg")
|
||||
|
||||
print(f"\n🏆 Ultra quality improvements:")
|
||||
print(f" ✅ 60 inference steps (maximum quality)")
|
||||
print(f" ✅ Higher guidance scales for perfect accuracy")
|
||||
print(f" ✅ Up to 1024x1024 resolution support")
|
||||
print(f" ✅ Single focused sample for consistency")
|
||||
print(f" ✅ Enhanced prompt engineering")
|
||||
print(f" ✅ Maximum quality JPEG compression (98%)")
|
||||
|
||||
else:
|
||||
print("❌ Ultra high-quality plant prediction failed.")
|
||||
print("💡 Check GPU memory and ensure RTX 3060 is available")
|
Loading…
Add table
Add a link
Reference in a new issue