final dashboard commit

This commit is contained in:
giusber2005 2025-08-02 08:07:31 +02:00
parent 76b5c25fee
commit 99e6901655
2 changed files with 49 additions and 48 deletions

View file

@ -415,6 +415,7 @@ class PlantGrowthDashboard:
params['ambient_mode'] = self.ambient_mode.get()
current_mode = self.ambient_mode.get()
happy_data = 0
if current_mode == "open":
happy_data = self.happyMeteo.openMeteoCall(days_difference)
@ -432,6 +433,9 @@ class PlantGrowthDashboard:
'end_date': self.calendar.get_date().isoformat()
}
if current_mode == "open":
submission_data['meteoForecast'] = happy_data
#Remove plant_info_text
self.plant_info_text.delete(1.0, tk.END)

View file

@ -31,53 +31,50 @@ class HappyMeteo:
print(f"Error getting location: {e}")
return None, None
def openMeteoCall(self, timeLapse):
lat, lon = self.get_current_location()
# Make sure all required weather variables are listed here
# The order of variables in hourly or daily is important to assign them correctly below
url = "https://api.open-meteo.com/v1/forecast"
params = {
"latitude": lat,
"longitude": lon,
"daily": ["weather_code", "temperature_2m_mean", "rain_sum", "showers_sum", "precipitation_sum", "daylight_duration", "relative_humidity_2m_mean"],
"timezone": "auto",
"forecast_days": timeLapse
def openMeteoCall(self, timeLapse):
lat, lon = self.get_current_location()
# Make sure all required weather variables are listed here
# The order of variables in hourly or daily is important to assign them correctly below
url = "https://api.open-meteo.com/v1/forecast"
params = {
"latitude": lat,
"longitude": lon,
"daily": ["weather_code", "temperature_2m_mean", "rain_sum", "showers_sum", "precipitation_sum", "daylight_duration", "relative_humidity_2m_mean"],
"timezone": "auto",
"forecast_days": timeLapse
}
responses = self.openmeteo.weather_api(url, params=params)
# Process first location. Add a for-loop for multiple locations or weather models
response = responses[0]
# Process daily data. The order of variables needs to be the same as requested.
daily = response.Daily()
daily_weather_code = daily.Variables(0).ValuesAsNumpy()
daily_temperature_2m_mean = daily.Variables(1).ValuesAsNumpy()
daily_rain_sum = daily.Variables(2).ValuesAsNumpy()
daily_showers_sum = daily.Variables(3).ValuesAsNumpy()
daily_precipitation_sum = daily.Variables(4).ValuesAsNumpy()
daily_daylight_duration = daily.Variables(5).ValuesAsNumpy()
daily_relative_humidity_2m_mean = daily.Variables(6).ValuesAsNumpy()
# Return comprehensive data structure
return {
"daily_data": {
"weather_code": daily_weather_code.tolist(),
"temperature_2m_mean": daily_temperature_2m_mean.tolist(),
"rain_sum": daily_rain_sum.tolist(),
"showers_sum": daily_showers_sum.tolist(),
"precipitation_sum": daily_precipitation_sum.tolist(),
"daylight_duration": daily_daylight_duration.tolist(),
"relative_humidity_2m_mean": daily_relative_humidity_2m_mean.tolist()
},
"summary": {
"avg_temperature": float(daily_temperature_2m_mean.mean()),
"total_precipitation": float(daily_precipitation_sum.sum()),
"avg_humidity": float(daily_relative_humidity_2m_mean.mean()),
"total_daylight_hours": float(daily_daylight_duration.sum() / 3600) # Convert seconds to hours
}
responses = self.openmeteo.weather_api(url, params=params)
# Process first location. Add a for-loop for multiple locations or weather models
response = responses[0]
print(f"Coordinates: {response.Latitude()}°N {response.Longitude()}°E")
print(f"Elevation: {response.Elevation()} m asl")
print(f"Timezone: {response.Timezone()}{response.TimezoneAbbreviation()}")
print(f"Timezone difference to GMT+0: {response.UtcOffsetSeconds()}s")
# Process daily data. The order of variables needs to be the same as requested.
daily = response.Daily()
daily_weather_code = daily.Variables(0).ValuesAsNumpy()
daily_temperature_2m_mean = daily.Variables(1).ValuesAsNumpy()
daily_rain_sum = daily.Variables(2).ValuesAsNumpy()
daily_showers_sum = daily.Variables(3).ValuesAsNumpy()
daily_precipitation_sum = daily.Variables(4).ValuesAsNumpy()
daily_daylight_duration = daily.Variables(5).ValuesAsNumpy()
daily_relative_humidity_2m_mean = daily.Variables(6).ValuesAsNumpy()
daily_data = {"date": pd.date_range(
start = pd.to_datetime(daily.Time(), unit = "s", utc = True),
end = pd.to_datetime(daily.TimeEnd(), unit = "s", utc = True),
freq = pd.Timedelta(seconds = daily.Interval()),
inclusive = "left"
)}
daily_data["weather_code"] = daily_weather_code
daily_data["temperature_2m_mean"] = daily_temperature_2m_mean
daily_data["rain_sum"] = daily_rain_sum
daily_data["showers_sum"] = daily_showers_sum
daily_data["precipitation_sum"] = daily_precipitation_sum
daily_data["daylight_duration"] = daily_daylight_duration
daily_data["relative_humidity_2m_mean"] = daily_relative_humidity_2m_mean
daily_dataframe = pd.DataFrame(data = daily_data)
print("\nDaily data\n", daily_dataframe)
}