adding dashboard to the commit

This commit is contained in:
giusber2005 2025-08-01 20:50:52 +02:00
parent f84ca4b517
commit a014734a9d
21 changed files with 2259 additions and 1 deletions

Binary file not shown.

BIN
PlantDashboard/.DS_Store vendored Normal file

Binary file not shown.

Binary file not shown.

View file

@ -0,0 +1,133 @@
import pandas as pd
import json
import csv
import os
from datetime import datetime
class DataHandler:
def __init__(self):
self.data_directory = "plant_data"
self.ensure_data_directory()
def ensure_data_directory(self):
"""Ensure the data directory exists"""
if not os.path.exists(self.data_directory):
os.makedirs(self.data_directory)
def save_prediction_data(self, parameters, prediction, filename=None):
"""Save prediction data to CSV"""
if filename is None:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"prediction_{timestamp}.csv"
filepath = os.path.join(self.data_directory, filename)
# Combine parameters and prediction results
data = {**parameters}
data.update({
'final_height': prediction['final_height'],
'growth_rate': prediction['growth_rate'],
'health_score': prediction['health_score'],
'optimal_conditions': prediction['optimal_conditions'],
'yield': prediction['yield'],
'timestamp': datetime.now().isoformat()
})
# Convert to DataFrame
df = pd.DataFrame([data])
try:
df.to_csv(filepath, index=False)
return filepath
except Exception as e:
print(f"Error saving data: {e}")
return None
def load_historical_data(self):
"""Load all historical prediction data"""
data_files = [f for f in os.listdir(self.data_directory) if f.endswith('.csv')]
if not data_files:
return pd.DataFrame()
all_data = []
for file in data_files:
filepath = os.path.join(self.data_directory, file)
try:
df = pd.read_csv(filepath)
all_data.append(df)
except Exception as e:
print(f"Error loading {file}: {e}")
if all_data:
return pd.concat(all_data, ignore_index=True)
else:
return pd.DataFrame()
def export_to_json(self, data, filename):
"""Export data to JSON format"""
filepath = os.path.join(self.data_directory, filename)
try:
with open(filepath, 'w') as f:
json.dump(data, f, indent=2, default=str)
return filepath
except Exception as e:
print(f"Error exporting to JSON: {e}")
return None
def import_from_json(self, filename):
"""Import data from JSON format"""
filepath = os.path.join(self.data_directory, filename)
try:
with open(filepath, 'r') as f:
data = json.load(f)
return data
except Exception as e:
print(f"Error importing from JSON: {e}")
return None
def get_plant_statistics(self, plant_type=None):
"""Get statistics for plant predictions"""
df = self.load_historical_data()
if df.empty:
return {}
if plant_type:
df = df[df['plant_type'] == plant_type]
if df.empty:
return {}
stats = {
'total_predictions': len(df),
'avg_final_height': df['final_height'].mean(),
'avg_health_score': df['health_score'].mean(),
'avg_growth_rate': df['growth_rate'].mean(),
'best_conditions': df['optimal_conditions'].max(),
'worst_conditions': df['optimal_conditions'].min()
}
return stats
def create_comparison_report(self, plant_types):
"""Create a comparison report for different plant types"""
df = self.load_historical_data()
if df.empty:
return {}
report = {}
for plant_type in plant_types:
plant_data = df[df['plant_type'] == plant_type]
if not plant_data.empty:
report[plant_type] = {
'count': len(plant_data),
'avg_height': plant_data['final_height'].mean(),
'avg_health': plant_data['health_score'].mean(),
'success_rate': len(plant_data[plant_data['health_score'] > 70]) / len(plant_data) * 100
}
return report

View file

@ -0,0 +1,77 @@
"""
Plant Growth Graphics Demo Launcher
Simple version focusing on visual capabilities
"""
import sys
import os
# Add the current directory to the Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, current_dir)
def check_requirements():
"""Check if required packages are available"""
required_packages = {
'tkinter': 'tkinter',
'matplotlib': 'matplotlib',
'seaborn': 'seaborn',
'numpy': 'numpy',
'PIL': 'Pillow'
}
missing_packages = []
for package, pip_name in required_packages.items():
try:
__import__(package)
print(f"{package} - OK")
except ImportError:
print(f"{package} - Missing")
missing_packages.append(pip_name)
if missing_packages:
print(f"\n📦 Install missing packages with:")
print(f"pip install {' '.join(missing_packages)}")
return False
return True
def main():
print("🎨 Plant Growth Graphics Demo")
print("=" * 40)
print("Checking requirements...")
if not check_requirements():
print("\n❌ Please install missing packages first!")
return
print("\n🚀 Starting graphics demo...")
try:
from graphics_demo import PlantGrowthGraphicsDemo
import tkinter as tk
root = tk.Tk()
app = PlantGrowthGraphicsDemo(root)
print("✅ Graphics demo ready!")
print("\n🎮 Demo Features:")
print(" • Real-time parameter visualization")
print(" • Interactive plant growth charts")
print(" • Dynamic plant evolution images")
print(" • Parameter heatmaps and 3D plots")
print(" • Live health indicators")
print(" • Animated growth sequences")
print("\n🎛️ Try changing parameters with the sliders!")
print("🎬 Click 'Animate Growth' for dynamic effects!")
root.mainloop()
except Exception as e:
print(f"❌ Error starting demo: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()

View file

@ -0,0 +1,694 @@
import tkinter as tk
from tkinter import ttk
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
import seaborn as sns
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import random
import math
from datetime import datetime
class PlantGrowthGraphicsDemo:
def __init__(self, root):
self.root = root
self.root.title("🌱 Plant Growth Graphics Demo")
self.root.geometry("1400x900")
self.root.configure(bg='#f0f0f0')
# Demo variables
self.current_plant = tk.StringVar(value="tomato")
self.ambient_mode = tk.StringVar(value="controlled")
# Environmental parameters for demo
self.env_params = {
'temperature': tk.DoubleVar(value=22.0),
'humidity': tk.DoubleVar(value=65.0),
'soil_acidity': tk.DoubleVar(value=6.5),
'pressure': tk.DoubleVar(value=1013.25),
'brightness': tk.DoubleVar(value=50.0),
'nutrients': tk.DoubleVar(value=75.0),
'water': tk.DoubleVar(value=80.0),
'co2': tk.DoubleVar(value=40.0)
}
# Plant colors for visualization
self.plant_colors = {
'tomato': {'stem': '#228B22', 'leaf': '#32CD32', 'fruit': '#FF6347'},
'basil': {'stem': '#228B22', 'leaf': '#90EE90', 'fruit': '#FFFFFF'},
'mint': {'stem': '#228B22', 'leaf': '#98FB98', 'fruit': '#FFFFFF'},
'lettuce': {'stem': '#228B22', 'leaf': '#ADFF2F', 'fruit': '#FFFFFF'},
'rosemary': {'stem': '#8B4513', 'leaf': '#556B2F', 'fruit': '#FFFFFF'},
'strawberry': {'stem': '#228B22', 'leaf': '#32CD32', 'fruit': '#FF1493'}
}
self.setup_ui()
self.update_all_graphics()
# Auto-update timer for dynamic effects
self.auto_update()
def setup_ui(self):
# Main container
main_frame = ttk.Frame(self.root, padding="10")
main_frame.grid(row=0, column=0, sticky=(tk.W, tk.E, tk.N, tk.S))
# Configure grid weights
self.root.columnconfigure(0, weight=1)
self.root.rowconfigure(0, weight=1)
main_frame.columnconfigure(1, weight=1)
main_frame.rowconfigure(1, weight=1)
# Title with animated effect
self.title_label = ttk.Label(main_frame, text="🌱 Plant Growth Graphics Demo",
font=('Arial', 16, 'bold'))
self.title_label.grid(row=0, column=0, columnspan=3, pady=(0, 20))
# Left panel - Controls
self.setup_control_panel(main_frame)
# Center panel - Main Visualization
self.setup_main_visualization(main_frame)
# Right panel - Additional Graphics
self.setup_additional_graphics(main_frame)
def setup_control_panel(self, parent):
control_frame = ttk.LabelFrame(parent, text="🎛️ Graphics Controls", padding="10")
control_frame.grid(row=1, column=0, sticky=(tk.W, tk.E, tk.N, tk.S), padx=(0, 10))
# Plant selection with immediate visual feedback
ttk.Label(control_frame, text="Plant Type:", font=('Arial', 10, 'bold')).grid(row=0, column=0, sticky=tk.W, pady=5)
plant_combo = ttk.Combobox(control_frame, textvariable=self.current_plant,
values=["tomato", "basil", "mint", "lettuce", "rosemary", "strawberry"])
plant_combo.grid(row=0, column=1, sticky=(tk.W, tk.E), pady=5)
plant_combo.bind('<<ComboboxSelected>>', self.on_plant_change)
# Ambient mode with visual indicators
ttk.Label(control_frame, text="Visual Mode:", font=('Arial', 10, 'bold')).grid(row=1, column=0, sticky=tk.W, pady=5)
mode_frame = ttk.Frame(control_frame)
mode_frame.grid(row=1, column=1, sticky=(tk.W, tk.E), pady=5)
ttk.Radiobutton(mode_frame, text="🎯 Controlled", variable=self.ambient_mode,
value="controlled", command=self.update_all_graphics).pack(side=tk.LEFT)
ttk.Radiobutton(mode_frame, text="🌊 Dynamic", variable=self.ambient_mode,
value="semi-controlled", command=self.update_all_graphics).pack(side=tk.LEFT)
ttk.Radiobutton(mode_frame, text="🌪️ Chaotic", variable=self.ambient_mode,
value="open", command=self.update_all_graphics).pack(side=tk.LEFT)
# Visual effects controls
ttk.Separator(control_frame, orient='horizontal').grid(row=2, column=0, columnspan=2, sticky=(tk.W, tk.E), pady=10)
ttk.Label(control_frame, text="🎨 Visual Parameters:",
font=('Arial', 10, 'bold')).grid(row=3, column=0, columnspan=2, pady=(10, 5))
# Parameter sliders with real-time visual updates
param_labels = {
'temperature': '🌡️ Temperature',
'humidity': '💧 Humidity',
'soil_acidity': '🧪 Soil pH',
'pressure': '🌬️ Pressure',
'brightness': '☀️ Light',
'nutrients': '🌿 Nutrients',
'water': '💦 Water',
'co2': '🫧 CO2'
}
row = 4
for param, label in param_labels.items():
ttk.Label(control_frame, text=label).grid(row=row, column=0, sticky=tk.W, pady=2)
# Create frame for slider and value display
slider_frame = ttk.Frame(control_frame)
slider_frame.grid(row=row, column=1, sticky=(tk.W, tk.E), pady=2)
scale = ttk.Scale(slider_frame, from_=0, to=100,
variable=self.env_params[param], orient=tk.HORIZONTAL,
command=lambda x, p=param: self.on_param_change(p))
scale.pack(side=tk.LEFT, fill=tk.X, expand=True)
# Value display
value_label = ttk.Label(slider_frame, text="0", width=4)
value_label.pack(side=tk.RIGHT)
# Store reference for updates
setattr(self, f"{param}_label", value_label)
row += 1
# Action buttons with visual feedback
button_frame = ttk.Frame(control_frame)
button_frame.grid(row=row, column=0, columnspan=2, pady=20)
ttk.Button(button_frame, text="🎬 Animate Growth",
command=self.animate_growth).pack(fill=tk.X, pady=2)
ttk.Button(button_frame, text="🎲 Randomize",
command=self.randomize_parameters).pack(fill=tk.X, pady=2)
ttk.Button(button_frame, text="🔄 Reset Demo",
command=self.reset_demo).pack(fill=tk.X, pady=2)
control_frame.columnconfigure(1, weight=1)
def setup_main_visualization(self, parent):
viz_frame = ttk.LabelFrame(parent, text="📊 Main Visualization", padding="10")
viz_frame.grid(row=1, column=1, sticky=(tk.W, tk.E, tk.N, tk.S), padx=5)
# Notebook for different visualization modes
self.notebook = ttk.Notebook(viz_frame)
self.notebook.grid(row=0, column=0, sticky=(tk.W, tk.E, tk.N, tk.S))
# Growth Chart Tab
self.setup_growth_chart_tab()
# Plant Evolution Tab
self.setup_plant_evolution_tab()
# Parameter Heatmap Tab
self.setup_heatmap_tab()
# 3D Visualization Tab
self.setup_3d_visualization_tab()
viz_frame.columnconfigure(0, weight=1)
viz_frame.rowconfigure(0, weight=1)
def setup_growth_chart_tab(self):
chart_frame = ttk.Frame(self.notebook)
self.notebook.add(chart_frame, text="📈 Growth Chart")
# Create matplotlib figure
self.fig, self.ax = plt.subplots(figsize=(8, 6))
self.fig.patch.set_facecolor('#f0f0f0')
self.canvas = FigureCanvasTkAgg(self.fig, chart_frame)
self.canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True)
def setup_plant_evolution_tab(self):
evolution_frame = ttk.Frame(self.notebook)
self.notebook.add(evolution_frame, text="🌱 Plant Evolution")
# Create scrollable frame for plant images
canvas_frame = tk.Canvas(evolution_frame, bg='white')
scrollbar = ttk.Scrollbar(evolution_frame, orient="vertical", command=canvas_frame.yview)
self.scrollable_frame = ttk.Frame(canvas_frame)
self.scrollable_frame.bind(
"<Configure>",
lambda e: canvas_frame.configure(scrollregion=canvas_frame.bbox("all"))
)
canvas_frame.create_window((0, 0), window=self.scrollable_frame, anchor="nw")
canvas_frame.configure(yscrollcommand=scrollbar.set)
canvas_frame.pack(side="left", fill="both", expand=True)
scrollbar.pack(side="right", fill="y")
# Plant evolution display
self.plant_images_frame = ttk.Frame(self.scrollable_frame)
self.plant_images_frame.pack(fill=tk.BOTH, expand=True, padx=10, pady=10)
def setup_heatmap_tab(self):
heatmap_frame = ttk.Frame(self.notebook)
self.notebook.add(heatmap_frame, text="🔥 Parameter Heatmap")
# Create seaborn heatmap
self.heatmap_fig, self.heatmap_ax = plt.subplots(figsize=(8, 6))
self.heatmap_fig.patch.set_facecolor('#f0f0f0')
self.heatmap_canvas = FigureCanvasTkAgg(self.heatmap_fig, heatmap_frame)
self.heatmap_canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True)
def setup_3d_visualization_tab(self):
viz_3d_frame = ttk.Frame(self.notebook)
self.notebook.add(viz_3d_frame, text="🎯 3D Analysis")
# Create 3D plot
self.fig_3d = plt.figure(figsize=(8, 6))
self.fig_3d.patch.set_facecolor('#f0f0f0')
self.ax_3d = self.fig_3d.add_subplot(111, projection='3d')
self.canvas_3d = FigureCanvasTkAgg(self.fig_3d, viz_3d_frame)
self.canvas_3d.get_tk_widget().pack(fill=tk.BOTH, expand=True)
def setup_additional_graphics(self, parent):
additional_frame = ttk.LabelFrame(parent, text="📋 Live Stats & Info", padding="10")
additional_frame.grid(row=1, column=2, sticky=(tk.W, tk.E, tk.N, tk.S), padx=(10, 0))
# Real-time statistics display
stats_frame = ttk.LabelFrame(additional_frame, text="📊 Live Statistics", padding="5")
stats_frame.pack(fill=tk.X, pady=(0, 10))
self.stats_text = tk.Text(stats_frame, height=8, width=25, wrap=tk.WORD,
font=('Courier', 9), bg='#f8f9fa')
self.stats_text.pack(fill=tk.BOTH, expand=True)
# Visual health indicator
health_frame = ttk.LabelFrame(additional_frame, text="🏥 Plant Health", padding="5")
health_frame.pack(fill=tk.X, pady=(0, 10))
self.health_canvas = tk.Canvas(health_frame, height=100, bg='white')
self.health_canvas.pack(fill=tk.X)
# Parameter radar chart
radar_frame = ttk.LabelFrame(additional_frame, text="🎯 Parameter Radar", padding="5")
radar_frame.pack(fill=tk.BOTH, expand=True)
self.radar_fig, self.radar_ax = plt.subplots(figsize=(4, 4), subplot_kw=dict(projection='polar'))
self.radar_fig.patch.set_facecolor('#f0f0f0')
self.radar_canvas = FigureCanvasTkAgg(self.radar_fig, radar_frame)
self.radar_canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True)
def on_plant_change(self, event=None):
self.update_all_graphics()
def on_param_change(self, param):
# Update value display
value = self.env_params[param].get()
label = getattr(self, f"{param}_label")
label.config(text=f"{value:.1f}")
# Update graphics in real-time
self.update_all_graphics()
def update_all_graphics(self):
self.update_growth_chart()
self.update_plant_evolution()
self.update_parameter_heatmap()
self.update_3d_visualization()
self.update_statistics()
self.update_health_indicator()
self.update_radar_chart()
def update_growth_chart(self):
self.ax.clear()
# Generate mock growth data based on parameters
days = np.arange(0, 100, 1)
# Base growth influenced by parameters
temp_factor = self.env_params['temperature'].get() / 100
water_factor = self.env_params['water'].get() / 100
light_factor = self.env_params['brightness'].get() / 100
# Create realistic growth curve
growth_rate = (temp_factor + water_factor + light_factor) / 3
if self.ambient_mode.get() == "open":
# Add chaos/randomness
noise = np.random.normal(0, 0.1, len(days))
heights = np.cumsum(np.maximum(0, growth_rate + noise)) * 2
elif self.ambient_mode.get() == "semi-controlled":
# Add some variation
noise = np.random.normal(0, 0.05, len(days))
heights = np.cumsum(np.maximum(0, growth_rate + noise)) * 2
else:
# Controlled growth
heights = np.cumsum([growth_rate] * len(days)) * 2
# Apply plant-specific characteristics
plant_multipliers = {
'tomato': 1.5, 'basil': 0.8, 'mint': 0.6,
'lettuce': 0.4, 'rosemary': 1.2, 'strawberry': 0.5
}
multiplier = plant_multipliers.get(self.current_plant.get(), 1.0)
heights = heights * multiplier
# Plot with plant-specific colors
colors = self.plant_colors[self.current_plant.get()]
self.ax.plot(days, heights, color=colors['leaf'], linewidth=2, marker='o', markersize=2)
# Add growth phases with different colors
phase_colors = ['lightblue', 'lightgreen', 'lightyellow', 'lightcoral']
phase_names = ['Germination', 'Seedling', 'Vegetative', 'Mature']
for i, (color, name) in enumerate(zip(phase_colors, phase_names)):
start_day = i * 25
end_day = (i + 1) * 25
if end_day <= len(days):
self.ax.axvspan(start_day, end_day, alpha=0.3, color=color, label=name)
self.ax.set_xlabel('Days')
self.ax.set_ylabel('Height (cm)')
self.ax.set_title(f'{self.current_plant.get().title()} Growth Simulation')
self.ax.grid(True, alpha=0.3)
self.ax.legend(loc='upper left')
# Add current parameter indicators
current_day = int(self.env_params['temperature'].get())
if current_day < len(heights):
self.ax.axvline(current_day, color='red', linestyle='--', alpha=0.7, label='Current Day')
self.ax.plot(current_day, heights[current_day], 'ro', markersize=8)
self.canvas.draw()
def update_plant_evolution(self):
# Clear previous images
for widget in self.plant_images_frame.winfo_children():
widget.destroy()
# Generate evolution stages
stages = ['Seed', 'Sprout', 'Young', 'Mature', 'Full Growth']
for i, stage in enumerate(stages):
stage_frame = ttk.Frame(self.plant_images_frame)
stage_frame.pack(fill=tk.X, pady=5)
# Stage label
ttk.Label(stage_frame, text=f"Stage {i+1}: {stage}",
font=('Arial', 10, 'bold')).pack()
# Generate plant image
plant_image = self.generate_plant_stage_image(i+1)
# Convert to PhotoImage and display
photo = tk.PhotoImage(data=self.pil_to_tk_data(plant_image))
image_label = tk.Label(stage_frame, image=photo)
image_label.image = photo # Keep reference
image_label.pack()
def generate_plant_stage_image(self, stage):
"""Generate a plant image for a specific growth stage"""
img = Image.new('RGB', (200, 150), color='#87CEEB') # Sky blue
draw = ImageDraw.Draw(img)
# Draw ground
ground_y = 130
draw.rectangle([0, ground_y, 200, 150], fill='#8B4513') # Brown ground
# Get plant colors
colors = self.plant_colors[self.current_plant.get()]
# Calculate plant size based on stage and parameters
health_factor = (sum(param.get() for param in self.env_params.values()) / len(self.env_params)) / 100
plant_height = stage * 15 * health_factor
plant_width = plant_height * 0.6
center_x = 100
base_y = ground_y
top_y = base_y - plant_height
# Draw stem
stem_width = max(2, int(plant_height * 0.1))
draw.rectangle([center_x - stem_width//2, int(top_y),
center_x + stem_width//2, base_y], fill=colors['stem'])
# Draw leaves
num_leaves = min(stage * 2, 8)
for i in range(num_leaves):
leaf_y = base_y - (i + 1) * (plant_height / (num_leaves + 1))
side = 1 if i % 2 == 0 else -1
leaf_x = center_x + side * (plant_width * 0.3)
leaf_size = plant_width * 0.2
# Draw leaf based on plant type
if self.current_plant.get() == 'lettuce':
# Broad leaves
draw.ellipse([leaf_x - leaf_size, leaf_y - leaf_size//2,
leaf_x + leaf_size, leaf_y + leaf_size//2], fill=colors['leaf'])
else:
# Regular leaves
draw.ellipse([leaf_x - leaf_size//2, leaf_y - leaf_size//3,
leaf_x + leaf_size//2, leaf_y + leaf_size//3], fill=colors['leaf'])
# Draw fruits for mature stages
if stage >= 4 and self.current_plant.get() in ['tomato', 'strawberry']:
fruit_color = colors['fruit']
for i in range(min(stage - 3, 3)):
fruit_x = center_x + random.randint(-15, 15)
fruit_y = int(top_y + random.randint(10, int(plant_height//2)))
fruit_size = 5 + stage
draw.ellipse([fruit_x - fruit_size, fruit_y - fruit_size,
fruit_x + fruit_size, fruit_y + fruit_size], fill=fruit_color)
# Add stage indicator
draw.text((5, 5), f"Stage {stage}", fill='black')
return img
def pil_to_tk_data(self, pil_image):
"""Convert PIL image to tkinter PhotoImage data"""
import io
import base64
# Convert to PNG bytes
buffer = io.BytesIO()
pil_image.save(buffer, format='PNG')
# Encode to base64
img_data = base64.b64encode(buffer.getvalue())
return img_data
def update_parameter_heatmap(self):
self.heatmap_ax.clear()
# Create parameter correlation matrix
param_names = list(self.env_params.keys())
param_values = [param.get() for param in self.env_params.values()]
# Create a correlation-like matrix for visualization
matrix = np.zeros((len(param_names), len(param_names)))
for i, val_i in enumerate(param_values):
for j, val_j in enumerate(param_values):
if i == j:
matrix[i][j] = val_i
else:
# Create interesting correlations
correlation = abs(val_i - val_j) / 100
matrix[i][j] = correlation * 50
# Create heatmap
sns.heatmap(matrix, annot=True, fmt='.1f', cmap='RdYlGn',
xticklabels=[name.replace('_', ' ').title() for name in param_names],
yticklabels=[name.replace('_', ' ').title() for name in param_names],
ax=self.heatmap_ax, cbar_kws={'label': 'Parameter Intensity'})
self.heatmap_ax.set_title(f'{self.current_plant.get().title()} Parameter Heatmap')
plt.setp(self.heatmap_ax.get_xticklabels(), rotation=45, ha='right')
plt.setp(self.heatmap_ax.get_yticklabels(), rotation=0)
self.heatmap_canvas.draw()
def update_3d_visualization(self):
self.ax_3d.clear()
# Create 3D scatter plot of parameters
temp = self.env_params['temperature'].get()
humidity = self.env_params['humidity'].get()
light = self.env_params['brightness'].get()
# Generate some sample data points around current parameters
n_points = 50
temps = np.random.normal(temp, 5, n_points)
humids = np.random.normal(humidity, 5, n_points)
lights = np.random.normal(light, 5, n_points)
# Color points based on "health" (distance from optimal)
optimal_temp, optimal_humid, optimal_light = 25, 60, 50
distances = np.sqrt((temps - optimal_temp)**2 +
(humids - optimal_humid)**2 +
(lights - optimal_light)**2)
colors = plt.cm.RdYlGn_r(distances / distances.max())
scatter = self.ax_3d.scatter(temps, humids, lights, c=colors, s=50, alpha=0.7)
# Highlight current point
self.ax_3d.scatter([temp], [humidity], [light], c='red', s=200, marker='*')
self.ax_3d.set_xlabel('Temperature (°C)')
self.ax_3d.set_ylabel('Humidity (%)')
self.ax_3d.set_zlabel('Light Intensity')
self.ax_3d.set_title(f'3D Parameter Space - {self.current_plant.get().title()}')
self.canvas_3d.draw()
def update_statistics(self):
self.stats_text.delete(1.0, tk.END)
# Calculate mock statistics
params = {name: param.get() for name, param in self.env_params.items()}
avg_param = sum(params.values()) / len(params)
health_score = min(100, avg_param * 1.2)
growth_rate = health_score / 20
stats_text = f"""🌱 PLANT STATISTICS
{'='*25}
Plant Type: {self.current_plant.get().title()}
Mode: {self.ambient_mode.get().title()}
📊 Current Metrics:
Health Score: {health_score:.1f}%
Growth Rate: {growth_rate:.2f} cm/day
Avg Parameter: {avg_param:.1f}
🌡 Environment:
Temperature: {params['temperature']:.1f}°C
Humidity: {params['humidity']:.1f}%
Soil pH: {params['soil_acidity']:.1f}
Light: {params['brightness']:.1f} lux
💧 Resources:
Water: {params['water']:.1f}%
Nutrients: {params['nutrients']:.1f}%
CO2: {params['co2']:.1f} ppm
Updated: {datetime.now().strftime('%H:%M:%S')}
"""
self.stats_text.insert(1.0, stats_text)
def update_health_indicator(self):
self.health_canvas.delete("all")
# Calculate health score
params = list(self.env_params.values())
health_score = sum(param.get() for param in params) / len(params)
# Draw health bar
bar_width = 180
bar_height = 20
x_start = 10
y_start = 40
# Background
self.health_canvas.create_rectangle(x_start, y_start,
x_start + bar_width, y_start + bar_height,
fill='lightgray', outline='black')
# Health bar
health_width = (health_score / 100) * bar_width
if health_score > 70:
color = 'green'
elif health_score > 40:
color = 'orange'
else:
color = 'red'
self.health_canvas.create_rectangle(x_start, y_start,
x_start + health_width, y_start + bar_height,
fill=color, outline='')
# Health text
self.health_canvas.create_text(100, 25, text=f"Health: {health_score:.1f}%",
font=('Arial', 12, 'bold'))
# Status emoji
if health_score > 80:
emoji = "🌟"
status = "Excellent"
elif health_score > 60:
emoji = "😊"
status = "Good"
elif health_score > 40:
emoji = "😐"
status = "Fair"
else:
emoji = "😟"
status = "Poor"
self.health_canvas.create_text(100, 75, text=f"{emoji} {status}",
font=('Arial', 10))
def update_radar_chart(self):
self.radar_ax.clear()
# Parameter names and values
param_names = ['Temp', 'Humid', 'pH', 'Press', 'Light', 'Nutri', 'Water', 'CO2']
param_values = [param.get() for param in self.env_params.values()]
# Number of variables
N = len(param_names)
# Compute angle for each axis
angles = [n / float(N) * 2 * np.pi for n in range(N)]
angles += angles[:1] # Complete the circle
# Add values
param_values += param_values[:1] # Complete the circle
# Plot
self.radar_ax.plot(angles, param_values, 'o-', linewidth=2,
color=self.plant_colors[self.current_plant.get()]['leaf'])
self.radar_ax.fill(angles, param_values, alpha=0.25,
color=self.plant_colors[self.current_plant.get()]['leaf'])
# Add labels
self.radar_ax.set_xticks(angles[:-1])
self.radar_ax.set_xticklabels(param_names)
self.radar_ax.set_ylim(0, 100)
self.radar_ax.set_title(f'{self.current_plant.get().title()} Parameters',
pad=20, fontsize=10)
self.radar_ax.grid(True)
self.radar_canvas.draw()
def animate_growth(self):
"""Animate parameter changes to show dynamic growth"""
def animate_step(step):
if step < 50: # 50 animation steps
# Gradually change parameters
for param in self.env_params.values():
current = param.get()
target = random.uniform(20, 80)
new_value = current + (target - current) * 0.1
param.set(new_value)
self.update_all_graphics()
self.root.after(100, lambda: animate_step(step + 1))
animate_step(0)
def randomize_parameters(self):
"""Randomize all parameters for demo purposes"""
for param in self.env_params.values():
param.set(random.uniform(10, 90))
self.update_all_graphics()
def reset_demo(self):
"""Reset all parameters to default values"""
defaults = {
'temperature': 22.0,
'humidity': 65.0,
'soil_acidity': 6.5,
'pressure': 50.0, # Normalized for demo
'brightness': 50.0,
'nutrients': 75.0,
'water': 80.0,
'co2': 40.0
}
for param_name, default_value in defaults.items():
self.env_params[param_name].set(default_value)
self.current_plant.set("tomato")
self.ambient_mode.set("controlled")
self.update_all_graphics()
def auto_update(self):
"""Auto-update for dynamic effects"""
if self.ambient_mode.get() == "open":
# Add small random variations in open mode
for param in self.env_params.values():
current = param.get()
variation = random.uniform(-1, 1)
new_value = max(0, min(100, current + variation))
param.set(new_value)
self.update_all_graphics()
# Schedule next update
self.root.after(2000, self.auto_update) # Update every 2 seconds
def main():
root = tk.Tk()
app = PlantGrowthGraphicsDemo(root)
root.mainloop()
if __name__ == "__main__":
main()

View file

@ -0,0 +1,239 @@
from PIL import Image, ImageDraw, ImageFont
import random
import math
import os
class ImageGenerator:
def __init__(self):
self.image_size = (400, 300)
self.plant_colors = {
'tomato': {'stem': '#228B22', 'leaf': '#32CD32', 'fruit': '#FF6347'},
'basil': {'stem': '#228B22', 'leaf': '#90EE90', 'fruit': '#FFFFFF'},
'mint': {'stem': '#228B22', 'leaf': '#98FB98', 'fruit': '#FFFFFF'},
'lettuce': {'stem': '#228B22', 'leaf': '#ADFF2F', 'fruit': '#FFFFFF'},
'rosemary': {'stem': '#8B4513', 'leaf': '#556B2F', 'fruit': '#FFFFFF'},
'strawberry': {'stem': '#228B22', 'leaf': '#32CD32', 'fruit': '#FF1493'}
}
def generate_evolution(self, plant_type, parameters, prediction, baseline_path=None):
"""Generate a series of images showing plant evolution"""
growth_stages = prediction['growth_stages']
health_score = prediction['health_score']
images = []
# Generate images for key growth stages
stage_indices = [0, len(growth_stages)//4, len(growth_stages)//2,
3*len(growth_stages)//4, len(growth_stages)-1]
for i, stage_idx in enumerate(stage_indices):
if stage_idx < len(growth_stages):
height = growth_stages[stage_idx]
image = self.generate_plant_image(plant_type, height, health_score, i+1)
images.append(image)
return images
def generate_plant_image(self, plant_type, height, health_score, stage):
"""Generate a single plant image"""
img = Image.new('RGB', self.image_size, color='#87CEEB') # Sky blue background
draw = ImageDraw.Draw(img)
# Draw ground
ground_y = self.image_size[1] - 50
draw.rectangle([0, ground_y, self.image_size[0], self.image_size[1]],
fill='#8B4513') # Brown ground
# Get plant colors (default to tomato since we removed plant type selection)
colors = self.plant_colors.get(plant_type, self.plant_colors['tomato'])
# Calculate plant dimensions based on height and health
if stage == 0: # Initial/seed stage
plant_height = 5 # Very small initial plant
plant_width = 3
else:
plant_height = min(height * 2, self.image_size[1] - 100) # Scale for display
plant_width = plant_height * 0.6
# Adjust colors based on health
health_factor = health_score / 100.0
stem_color = self._adjust_color_health(colors['stem'], health_factor)
leaf_color = self._adjust_color_health(colors['leaf'], health_factor)
# Plant center position
center_x = self.image_size[0] // 2
base_y = ground_y
if stage == 0:
# Draw seed/initial state
self._draw_seed(draw, center_x, base_y - 10, health_factor)
else:
# Draw stem
stem_width = max(2, int(plant_height * 0.05))
stem_top_y = base_y - plant_height
draw.rectangle([center_x - stem_width//2, int(stem_top_y),
center_x + stem_width//2, base_y], fill=stem_color)
# Draw leaves based on plant type and stage
self._draw_leaves(draw, plant_type, center_x, stem_top_y, base_y,
plant_width, leaf_color, stage)
# Draw fruits/flowers if applicable
if stage >= 3 and plant_type in ['tomato', 'strawberry']:
self._draw_fruits(draw, plant_type, center_x, stem_top_y, base_y,
colors['fruit'], stage)
# Add stage label
try:
font = ImageFont.load_default()
except:
font = None
if stage == 0:
stage_text = f"Initial State - Seed"
else:
stage_text = f"Stage {stage} - Height: {height:.1f}cm"
if font:
draw.text((10, 10), stage_text, fill='black', font=font)
else:
draw.text((10, 10), stage_text, fill='black')
# Add health indicator
health_text = f"Health: {health_score:.1f}%"
health_color = 'green' if health_score > 70 else 'orange' if health_score > 40 else 'red'
if font:
draw.text((10, 30), health_text, fill=health_color, font=font)
else:
draw.text((10, 30), health_text, fill=health_color)
return img
def _draw_seed(self, draw, x, y, health_factor):
"""Draw a seed for the initial state"""
seed_size = 8
seed_color = '#8B4513' # Brown seed
# Adjust seed color based on health
if health_factor > 0.7:
seed_color = '#654321' # Healthy brown
elif health_factor > 0.4:
seed_color = '#8B4513' # Normal brown
else:
seed_color = '#A0522D' # Pale brown
# Draw seed
draw.ellipse([x - seed_size, y - seed_size//2,
x + seed_size, y + seed_size//2], fill=seed_color)
# Draw small sprout if health is good
if health_factor > 0.5:
sprout_color = '#90EE90'
draw.line([x, y - seed_size//2, x, y - seed_size//2 - 5],
fill=sprout_color, width=2)
def _draw_leaves(self, draw, plant_type, center_x, top_y, base_y, width, color, stage):
"""Draw leaves based on plant type"""
plant_height = base_y - top_y
num_leaves = min(stage * 2, 8) # More leaves as plant grows
for i in range(num_leaves):
# Calculate leaf position
y_pos = base_y - (i + 1) * (plant_height / (num_leaves + 1))
side = 1 if i % 2 == 0 else -1 # Alternate sides
leaf_x = center_x + side * (width * 0.3)
leaf_size = width * 0.2 * (1 + stage * 0.1)
if plant_type == 'lettuce':
# Draw broad leaves for lettuce
self._draw_broad_leaf(draw, leaf_x, y_pos, leaf_size, color)
elif plant_type == 'rosemary':
# Draw needle-like leaves for rosemary
self._draw_needle_leaf(draw, leaf_x, y_pos, leaf_size, color)
else:
# Draw regular oval leaves (default for tomato)
self._draw_oval_leaf(draw, leaf_x, y_pos, leaf_size, color)
def _draw_oval_leaf(self, draw, x, y, size, color):
"""Draw an oval leaf"""
draw.ellipse([x - size//2, y - size//3, x + size//2, y + size//3], fill=color)
def _draw_broad_leaf(self, draw, x, y, size, color):
"""Draw a broad leaf for lettuce"""
points = [
(x, y - size//2),
(x + size//2, y),
(x, y + size//2),
(x - size//2, y)
]
draw.polygon(points, fill=color)
def _draw_needle_leaf(self, draw, x, y, size, color):
"""Draw needle-like leaves for rosemary"""
for i in range(3):
offset = (i - 1) * 3
draw.line([x + offset, y - size//4, x + offset, y + size//4],
fill=color, width=2)
def _draw_fruits(self, draw, plant_type, center_x, top_y, base_y, color, stage):
"""Draw fruits based on plant type"""
if plant_type == 'tomato':
# Draw tomatoes
num_fruits = min(stage - 2, 4)
for i in range(num_fruits):
fruit_x = center_x + random.randint(-20, 20)
fruit_y = int(top_y + random.randint(10, (base_y - top_y) // 2))
fruit_size = 8 + stage * 2
draw.ellipse([fruit_x - fruit_size, fruit_y - fruit_size,
fruit_x + fruit_size, fruit_y + fruit_size], fill=color)
elif plant_type == 'strawberry':
# Draw strawberries
num_fruits = min(stage - 2, 3)
for i in range(num_fruits):
fruit_x = center_x + random.randint(-15, 15)
fruit_y = base_y - random.randint(20, 40)
self._draw_strawberry(draw, fruit_x, fruit_y, color)
def _draw_strawberry(self, draw, x, y, color):
"""Draw a strawberry shape"""
# Draw strawberry body
points = [(x, y - 8), (x + 6, y), (x, y + 8), (x - 6, y)]
draw.polygon(points, fill=color)
# Draw strawberry top (green)
draw.polygon([(x - 3, y - 8), (x, y - 12), (x + 3, y - 8)], fill='green')
def _adjust_color_health(self, color_hex, health_factor):
"""Adjust color based on plant health"""
# Convert hex to RGB
color_hex = color_hex.lstrip('#')
r, g, b = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
# Adjust brightness based on health
factor = 0.5 + health_factor * 0.5 # Range from 0.5 to 1.0
r = int(r * factor)
g = int(g * factor)
b = int(b * factor)
# Ensure values are within valid range
r = max(0, min(255, r))
g = max(0, min(255, g))
b = max(0, min(255, b))
return f'#{r:02x}{g:02x}{b:02x}'
def save_evolution_sequence(self, images, filename):
"""Save evolution images as separate files"""
if images:
try:
base_name = filename.rsplit('.', 1)[0]
for i, image in enumerate(images):
stage_filename = f"{base_name}_stage_{i+1}.png"
image.save(stage_filename)
return True
except Exception as e:
print(f"Error saving images: {e}")
return False
return False

View file

@ -0,0 +1,102 @@
"""
Installation script for Plant Growth Forecasting Dashboard
(Without opencv-cv and seaborn dependencies)
"""
import subprocess
import sys
import os
def install_package(package):
"""Install a package using pip"""
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
return True
except subprocess.CalledProcessError:
return False
def check_tkinter():
"""Check if tkinter is available"""
try:
import tkinter
return True
except ImportError:
return False
def main():
print("🌱 Plant Growth Forecasting Dashboard - Installation Script")
print("=" * 60)
# Check Python version
if sys.version_info < (3.7, 0):
print("❌ Error: Python 3.7 or higher is required")
print(f"Current version: {sys.version}")
sys.exit(1)
print(f"✅ Python version: {sys.version}")
# Check tkinter availability
if not check_tkinter():
print("❌ tkinter is not available!")
print("Please install tkinter using your system package manager:")
print(" Ubuntu/Debian: sudo apt-get install python3-tk")
print(" CentOS/RHEL: sudo yum install tkinter")
print(" macOS: tkinter should be included with Python")
print(" Windows: tkinter should be included with Python")
sys.exit(1)
print("✅ tkinter is available")
# Install requirements
requirements_file = os.path.join(os.path.dirname(__file__), "..", "requirements.txt")
if not os.path.exists(requirements_file):
print("❌ requirements.txt not found!")
sys.exit(1)
print("\n📦 Installing required packages...")
try:
subprocess.check_call([
sys.executable, "-m", "pip", "install", "-r", requirements_file
])
print("✅ All packages installed successfully!")
except subprocess.CalledProcessError as e:
print(f"❌ Error installing packages: {e}")
print("\nTrying to install core packages individually...")
core_packages = [
"matplotlib>=3.5.0",
"pandas>=1.3.0",
"numpy>=1.21.0",
"Pillow>=8.3.0",
"joblib>=1.1.0"
]
failed_packages = []
for package in core_packages:
print(f"Installing {package}...")
if install_package(package):
print(f"{package} installed")
else:
print(f"❌ Failed to install {package}")
failed_packages.append(package)
if failed_packages:
print(f"\n❌ Failed to install: {', '.join(failed_packages)}")
print("Please install these packages manually")
sys.exit(1)
print("\n🎉 Installation completed successfully!")
print("\nTo run the application:")
print(" python scripts/launcher.py")
print("\nOr run the main dashboard directly:")
print(" python scripts/main_dashboard.py")
print("\n📋 Note: This version excludes opencv-cv and seaborn")
print(" • Heatmaps use matplotlib instead of seaborn")
print(" • Video functionality has been removed")
print(" • All other features remain fully functional")
if __name__ == "__main__":
main()

View file

@ -0,0 +1,52 @@
"""
Plant Growth Forecasting Dashboard Launcher
"""
import sys
import os
# Add the current directory to the Python path
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, current_dir)
try:
from main_dashboard import PlantGrowthDashboard
import tkinter as tk
def main():
print("🌱 Starting Plant Growth Forecasting Dashboard...")
print("Loading AI models and initializing interface...")
root = tk.Tk()
# Set application icon and styling
try:
root.iconname("Plant Growth Forecaster")
except:
pass
app = PlantGrowthDashboard(root)
print("✅ Dashboard ready!")
print("Features available:")
print(" • AI-powered plant growth prediction")
print(" • Real-time parameter control")
print(" • Visual growth simulation")
print(" • Environmental analysis")
print(" • Data export/import")
print(" • Multiple ambient modes")
print(" • Plant evolution visualization")
root.mainloop()
if __name__ == "__main__":
main()
except ImportError as e:
print(f"❌ Error importing required modules: {e}")
print("Please ensure all required packages are installed:")
print(" pip install matplotlib pandas pillow numpy joblib")
sys.exit(1)
except Exception as e:
print(f"❌ Error starting application: {e}")
sys.exit(1)

View file

@ -0,0 +1,473 @@
import tkinter as tk
from tkinter import ttk, filedialog, messagebox
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
import pandas as pd
import numpy as np
from PIL import Image, ImageTk
import json
import os
from datetime import datetime, timedelta
import joblib
from plant_model import PlantGrowthModel
from data_handler import DataHandler
from image_generator import ImageGenerator
class PlantGrowthDashboard:
def __init__(self, root):
self.root = root
self.root.title("WeGrow")
self.root.geometry("1000x800") # More square dimensions
self.root.configure(bg='#f0f0f0')
image = Image.open("public/transparentLogo.png")
# Convert to PhotoImage
icon = ImageTk.PhotoImage(image)
# Set as window icon
self.root.iconphoto(False, icon)
# Initialize components
self.plant_model = PlantGrowthModel()
self.data_handler = DataHandler()
self.image_generator = ImageGenerator()
# Variables - fixed plant type
self.current_plant = "tomato" # Fixed plant type
self.ambient_mode = tk.StringVar(value="controlled")
self.baseline_image_path = None
# Environmental parameters with defaults
self.default_params = {
'temperature': 22.0,
'humidity': 65.0,
'soil_acidity': 6.5,
'pressure': 1013.25,
'brightness': 50000.0,
'nutrients': 75.0,
'water': 80.0,
'co2': 400.0
}
self.env_params = {
'temperature': tk.DoubleVar(value=self.default_params['temperature']),
'humidity': tk.DoubleVar(value=self.default_params['humidity']),
'soil_acidity': tk.DoubleVar(value=self.default_params['soil_acidity']),
'pressure': tk.DoubleVar(value=self.default_params['pressure']),
'brightness': tk.DoubleVar(value=self.default_params['brightness']),
'nutrients': tk.DoubleVar(value=self.default_params['nutrients']),
'water': tk.DoubleVar(value=self.default_params['water']),
'co2': tk.DoubleVar(value=self.default_params['co2'])
}
self.setup_ui()
self.update_prediction()
def setup_ui(self):
# Main container with square layout
main_frame = ttk.Frame(self.root, padding="8")
main_frame.grid(row=0, column=0, sticky=(tk.W, tk.E, tk.N, tk.S))
# Configure grid weights for square layout
self.root.columnconfigure(0, weight=1)
self.root.rowconfigure(0, weight=1)
main_frame.columnconfigure(0, weight=1)
main_frame.columnconfigure(1, weight=2) # Center panel wider
main_frame.columnconfigure(2, weight=1)
main_frame.rowconfigure(1, weight=1)
# Title
title_label = ttk.Label(main_frame, text="🌱 Plant Growth Dashboard",
font=('Arial', 14, 'bold'))
title_label.grid(row=0, column=0, columnspan=3, pady=(0, 10))
# Left panel - Controls
self.setup_control_panel(main_frame)
# Center panel - Plant Visualization
self.setup_visualization_panel(main_frame)
# Right panel - Results only (no system messages)
self.setup_results_panel(main_frame)
def setup_control_panel(self, parent):
control_frame = ttk.LabelFrame(parent, text="Environmental Controls", padding="6")
control_frame.grid(row=1, column=0, sticky=(tk.W, tk.E, tk.N, tk.S), padx=(0, 6))
# Ambient mode
ttk.Label(control_frame, text="Environment Mode:", font=('Arial', 9, 'bold')).grid(row=0, column=0, columnspan=2, sticky=tk.W, pady=(0, 6))
mode_frame = ttk.Frame(control_frame)
mode_frame.grid(row=1, column=0, columnspan=2, sticky=(tk.W, tk.E), pady=(0, 8))
ttk.Radiobutton(mode_frame, text="Controlled", variable=self.ambient_mode,
value="controlled", command=self.on_mode_change).pack(anchor=tk.W)
ttk.Radiobutton(mode_frame, text="Semi-Controlled", variable=self.ambient_mode,
value="semi-controlled", command=self.on_mode_change).pack(anchor=tk.W)
ttk.Radiobutton(mode_frame, text="Open", variable=self.ambient_mode,
value="open", command=self.on_mode_change).pack(anchor=tk.W)
# Baseline image
ttk.Button(control_frame, text="📷 Load Plant Image",
command=self.load_baseline_image).grid(row=2, column=0, columnspan=2, pady=(0, 10), sticky=(tk.W, tk.E))
# Environmental parameters
ttk.Label(control_frame, text="Parameters:",
font=('Arial', 9, 'bold')).grid(row=3, column=0, columnspan=2, sticky=tk.W, pady=(0, 4))
param_labels = {
'temperature': '🌡️ Temp (°C)',
'humidity': '💧 Humidity (%)',
'soil_acidity': '🧪 pH',
'pressure': '🌬️ Pressure',
'brightness': '☀️ Light',
'nutrients': '🌿 Nutrients (%)',
'water': '💦 Water (%)',
'co2': '🫧 CO2'
}
row = 4
for param, label in param_labels.items():
# Compact parameter layout
param_frame = ttk.Frame(control_frame)
param_frame.grid(row=row, column=0, columnspan=2, sticky=(tk.W, tk.E), pady=1)
ttk.Label(param_frame, text=label, width=11, font=('Arial', 8)).pack(side=tk.LEFT)
# Scale ranges based on parameter type
if param == 'co2':
scale_max = 1000
elif param == 'brightness':
scale_max = 100000
elif param == 'pressure':
scale_max = 1100
elif param == 'soil_acidity':
scale_max = 14
else:
scale_max = 100
scale = ttk.Scale(param_frame, from_=0, to=scale_max,
variable=self.env_params[param], orient=tk.HORIZONTAL,
command=lambda x, p=param: self.on_param_change(p))
scale.pack(side=tk.LEFT, fill=tk.X, expand=True, padx=(4, 4))
# Value label
value_label = ttk.Label(param_frame, text=f"{self.env_params[param].get():.1f}", width=5, font=('Arial', 8))
value_label.pack(side=tk.RIGHT)
# Store reference for updates
setattr(self, f"{param}_value_label", value_label)
row += 1
# Set to Default button
ttk.Button(control_frame, text="🔄 Set to Default",
command=self.set_to_default).grid(row=row, column=0, columnspan=2, pady=(10, 0), sticky=(tk.W, tk.E))
control_frame.columnconfigure(0, weight=1)
control_frame.columnconfigure(1, weight=1)
def setup_visualization_panel(self, parent):
viz_frame = ttk.LabelFrame(parent, text="Plant Visualization", padding="6")
viz_frame.grid(row=1, column=1, sticky=(tk.W, tk.E, tk.N, tk.S), padx=3)
# Notebook for different views
notebook = ttk.Notebook(viz_frame)
notebook.grid(row=0, column=0, sticky=(tk.W, tk.E, tk.N, tk.S))
# Plant Before Growth tab
self.setup_before_growth_tab(notebook)
# Plant Evolution tab
self.setup_plant_evolution_tab(notebook)
viz_frame.columnconfigure(0, weight=1)
viz_frame.rowconfigure(0, weight=1)
def setup_before_growth_tab(self, notebook):
"""Tab showing the plant before growth starts"""
before_frame = ttk.Frame(notebook)
notebook.add(before_frame, text="🌱 Initial Plant")
# Create a frame for the initial plant display
display_frame = ttk.Frame(before_frame)
display_frame.pack(fill=tk.BOTH, expand=True, padx=8, pady=8)
# Title for initial state
title_label = ttk.Label(display_frame, text="Plant Initial State",
font=('Arial', 11, 'bold'))
title_label.pack(pady=(0, 8))
# Frame for the plant image
self.initial_plant_frame = ttk.Frame(display_frame)
self.initial_plant_frame.pack(fill=tk.BOTH, expand=True)
# Initial plant image label
self.initial_plant_label = ttk.Label(self.initial_plant_frame,
text="Initial plant state will appear here",
font=('Arial', 9))
self.initial_plant_label.pack(expand=True)
# Plant info display
info_frame = ttk.LabelFrame(display_frame, text="Plant Information", padding="4")
info_frame.pack(fill=tk.X, pady=(8, 0))
self.plant_info_text = tk.Text(info_frame, height=8, width=35, wrap=tk.WORD,
font=('Arial', 8), bg='#f8f9fa')
self.plant_info_text.pack(fill=tk.BOTH, expand=True)
# Submit button
submit_frame = ttk.Frame(display_frame)
submit_frame.pack(fill=tk.X, pady=(8, 0))
ttk.Button(submit_frame, text="📤 Submit Plant Information & Photo",
command=self.submit_plant_data).pack(fill=tk.X)
def setup_plant_evolution_tab(self, notebook):
"""Evolution tab"""
evolution_frame = ttk.Frame(notebook)
notebook.add(evolution_frame, text="🌿 Growth Evolution")
# Create scrollable frame for plant images
canvas_scroll = tk.Canvas(evolution_frame)
scrollbar = ttk.Scrollbar(evolution_frame, orient="vertical", command=canvas_scroll.yview)
self.scrollable_frame = ttk.Frame(canvas_scroll)
self.scrollable_frame.bind(
"<Configure>",
lambda e: canvas_scroll.configure(scrollregion=canvas_scroll.bbox("all"))
)
canvas_scroll.create_window((0, 0), window=self.scrollable_frame, anchor="nw")
canvas_scroll.configure(yscrollcommand=scrollbar.set)
canvas_scroll.pack(side="left", fill="both", expand=True)
scrollbar.pack(side="right", fill="y")
self.image_display_frame = ttk.Frame(self.scrollable_frame)
self.image_display_frame.pack(fill=tk.BOTH, expand=True, padx=6, pady=6)
def setup_results_panel(self, parent):
results_frame = ttk.LabelFrame(parent, text="Growth Prediction", padding="6")
results_frame.grid(row=1, column=2, sticky=(tk.W, tk.E, tk.N, tk.S), padx=(6, 0))
# Prediction results only (no system messages)
ttk.Label(results_frame, text="Forecast Results:",
font=('Arial', 9, 'bold')).grid(row=0, column=0, sticky=tk.W, pady=(0, 4))
self.results_text = tk.Text(results_frame, height=20, width=26, wrap=tk.WORD, font=('Arial', 8))
self.results_text.grid(row=1, column=0, sticky=(tk.W, tk.E, tk.N, tk.S))
results_frame.columnconfigure(0, weight=1)
results_frame.rowconfigure(1, weight=1)
def on_mode_change(self):
self.update_prediction()
def on_param_change(self, param):
value = self.env_params[param].get()
# Update value label
value_label = getattr(self, f"{param}_value_label")
if param == 'soil_acidity':
value_label.config(text=f"{value:.1f}")
elif param in ['brightness', 'pressure', 'co2']:
value_label.config(text=f"{value:.0f}")
else:
value_label.config(text=f"{value:.1f}")
# Auto-update prediction when parameters change
self.update_prediction()
def set_to_default(self):
"""Reset all parameters to default values"""
for param_name, default_value in self.default_params.items():
self.env_params[param_name].set(default_value)
self.ambient_mode.set("controlled")
self.update_prediction()
def load_baseline_image(self):
file_path = filedialog.askopenfilename(
title="Select baseline plant image",
filetypes=[("Image files", "*.jpg *.jpeg *.png *.bmp *.gif")]
)
if file_path:
self.baseline_image_path = file_path
self.update_prediction()
def submit_plant_data(self):
"""Submit plant information and photo"""
try:
# Get current parameters
params = {param: var.get() for param, var in self.env_params.items()}
params['plant_type'] = self.current_plant
params['ambient_mode'] = self.ambient_mode.get()
# Create submission data
submission_data = {
'timestamp': datetime.now().isoformat(),
'parameters': params,
'baseline_image_path': self.baseline_image_path,
'plant_info': self.plant_info_text.get(1.0, tk.END),
'results': self.results_text.get(1.0, tk.END)
}
# Show confirmation dialog
messagebox.showinfo("Submission Successful",
"Plant information and photo have been submitted successfully!\n\n"
f"Submission ID: {datetime.now().strftime('%Y%m%d_%H%M%S')}")
except Exception as e:
messagebox.showerror("Submission Error", f"Error submitting data: {str(e)}")
def update_prediction(self):
try:
# Get current parameters
params = {param: var.get() for param, var in self.env_params.items()}
params['plant_type'] = self.current_plant
params['ambient_mode'] = self.ambient_mode.get()
# Generate prediction
prediction = self.plant_model.predict_growth(params)
# Update initial plant display
self.update_initial_plant_display(params, prediction)
# Generate plant evolution images
self.generate_plant_evolution(params, prediction)
# Update results text
self.update_results_display(prediction)
except Exception as e:
messagebox.showerror("Prediction Error", f"Error generating prediction: {str(e)}")
def update_initial_plant_display(self, params, prediction):
"""Update the initial plant state display"""
try:
# Generate initial plant image (stage 0)
initial_image = self.image_generator.generate_plant_image(
self.current_plant, 0.5, prediction['health_score'], 0
)
# Resize image to fit better in square layout
initial_image = initial_image.resize((280, 210), Image.Resampling.LANCZOS)
# Convert to PhotoImage and display
photo = ImageTk.PhotoImage(initial_image)
self.initial_plant_label.configure(image=photo, text="")
self.initial_plant_label.image = photo # Keep reference
# Update plant information
self.update_plant_info(params, prediction)
except Exception as e:
messagebox.showerror("Image Error", f"Could not generate initial plant image: {str(e)}")
def update_plant_info(self, params, prediction):
"""Update plant information display"""
self.plant_info_text.delete(1.0, tk.END)
info_text = f"""🌱 PLANT STATUS
{'='*22}
Plant Type: Tomato
Health Score: {prediction['health_score']:.1f}%
Growth Rate: {prediction['growth_rate']:.2f} cm/day
🌡 CONDITIONS:
Temperature: {params['temperature']:.1f}°C
Humidity: {params['humidity']:.1f}%
Soil pH: {params['soil_acidity']:.1f}
Light: {params['brightness']:.0f} lux
Water: {params['water']:.1f}%
Nutrients: {params['nutrients']:.1f}%
📊 FORECAST:
Final Height: {prediction['final_height']:.1f} cm
Expected Yield: {prediction.get('yield', 'N/A')}
Optimal Conditions: {prediction['optimal_conditions']:.1f}%
"""
self.plant_info_text.insert(1.0, info_text)
def generate_plant_evolution(self, params, prediction):
"""Generate and display plant evolution images"""
try:
# Generate plant evolution images
images = self.image_generator.generate_evolution(
self.current_plant, params, prediction, self.baseline_image_path
)
if images:
# Clear previous images
for widget in self.image_display_frame.winfo_children():
widget.destroy()
# Display evolution stages in a square grid
stages_per_row = 2 # Square layout
for i, image in enumerate(images):
row = i // stages_per_row
col = i % stages_per_row
stage_frame = ttk.Frame(self.image_display_frame)
stage_frame.grid(row=row, column=col, padx=4, pady=4, sticky=(tk.W, tk.E))
# Stage label
ttk.Label(stage_frame, text=f"Stage {i+1}",
font=('Arial', 9, 'bold')).pack()
# Resize image for compact display
resized_image = image.resize((180, 135), Image.Resampling.LANCZOS)
# Convert PIL image to PhotoImage
photo = ImageTk.PhotoImage(resized_image)
image_label = tk.Label(stage_frame, image=photo)
image_label.image = photo # Keep a reference
image_label.pack()
# Configure grid weights for even distribution
for col in range(stages_per_row):
self.image_display_frame.columnconfigure(col, weight=1)
except Exception as e:
messagebox.showerror("Evolution Error", f"Could not generate evolution images: {str(e)}")
def update_results_display(self, prediction):
self.results_text.delete(1.0, tk.END)
results = f"""🌱 GROWTH FORECAST
{'='*18}
Final Height: {prediction['final_height']:.1f} cm
Growth Rate: {prediction['growth_rate']:.2f} cm/day
Health Score: {prediction['health_score']:.1f}/100
📅 Growth Phases:
"""
for phase in prediction.get('phases', []):
results += f"{phase['name']}: Days {phase['start']}-{phase['end']}\n"
results += f"\n✅ Optimal Conditions: {prediction['optimal_conditions']:.1f}%"
results += f"\n🍅 Expected Yield: {prediction.get('yield', 'N/A')}"
# Add environmental summary
results += f"\n\n🌡️ ENVIRONMENT SUMMARY:"
results += f"\nTemperature: {self.env_params['temperature'].get():.1f}°C"
results += f"\nHumidity: {self.env_params['humidity'].get():.1f}%"
results += f"\nSoil pH: {self.env_params['soil_acidity'].get():.1f}"
results += f"\nLight Level: {self.env_params['brightness'].get():.0f} lux"
results += f"\nWater Level: {self.env_params['water'].get():.1f}%"
results += f"\nNutrients: {self.env_params['nutrients'].get():.1f}%"
results += f"\nCO2 Level: {self.env_params['co2'].get():.0f} ppm"
self.results_text.insert(1.0, results)
def main():
root = tk.Tk()
app = PlantGrowthDashboard(root)
root.mainloop()
if __name__ == "__main__":
main()

View file

@ -0,0 +1,303 @@
import numpy as np
import joblib
import pickle
from datetime import datetime, timedelta
import random
class PlantGrowthModel:
def __init__(self):
self.plant_characteristics = {
'tomato': {
'max_height': 150,
'growth_rate_base': 2.5,
'optimal_temp': (20, 25),
'optimal_humidity': (60, 70),
'optimal_ph': (6.0, 6.8),
'phases': [
{'name': 'Germination', 'duration': 7, 'growth_factor': 0.1},
{'name': 'Seedling', 'duration': 14, 'growth_factor': 0.3},
{'name': 'Vegetative', 'duration': 30, 'growth_factor': 1.0},
{'name': 'Flowering', 'duration': 21, 'growth_factor': 0.7},
{'name': 'Fruiting', 'duration': 28, 'growth_factor': 0.4}
]
},
'basil': {
'max_height': 60,
'growth_rate_base': 1.8,
'optimal_temp': (18, 24),
'optimal_humidity': (50, 65),
'optimal_ph': (6.0, 7.0),
'phases': [
{'name': 'Germination', 'duration': 5, 'growth_factor': 0.1},
{'name': 'Seedling', 'duration': 10, 'growth_factor': 0.4},
{'name': 'Vegetative', 'duration': 25, 'growth_factor': 1.0},
{'name': 'Mature', 'duration': 30, 'growth_factor': 0.6}
]
},
'mint': {
'max_height': 40,
'growth_rate_base': 2.0,
'optimal_temp': (15, 22),
'optimal_humidity': (65, 75),
'optimal_ph': (6.0, 7.0),
'phases': [
{'name': 'Germination', 'duration': 7, 'growth_factor': 0.1},
{'name': 'Seedling', 'duration': 12, 'growth_factor': 0.3},
{'name': 'Vegetative', 'duration': 20, 'growth_factor': 1.0},
{'name': 'Mature', 'duration': 35, 'growth_factor': 0.5}
]
},
'lettuce': {
'max_height': 25,
'growth_rate_base': 1.2,
'optimal_temp': (16, 20),
'optimal_humidity': (70, 80),
'optimal_ph': (6.0, 7.0),
'phases': [
{'name': 'Germination', 'duration': 4, 'growth_factor': 0.1},
{'name': 'Seedling', 'duration': 8, 'growth_factor': 0.4},
{'name': 'Vegetative', 'duration': 20, 'growth_factor': 1.0},
{'name': 'Mature', 'duration': 18, 'growth_factor': 0.3}
]
},
'rosemary': {
'max_height': 120,
'growth_rate_base': 0.8,
'optimal_temp': (18, 25),
'optimal_humidity': (40, 55),
'optimal_ph': (6.0, 7.5),
'phases': [
{'name': 'Germination', 'duration': 14, 'growth_factor': 0.05},
{'name': 'Seedling', 'duration': 21, 'growth_factor': 0.2},
{'name': 'Vegetative', 'duration': 60, 'growth_factor': 1.0},
{'name': 'Mature', 'duration': 90, 'growth_factor': 0.4}
]
},
'strawberry': {
'max_height': 30,
'growth_rate_base': 1.5,
'optimal_temp': (18, 24),
'optimal_humidity': (60, 70),
'optimal_ph': (5.5, 6.5),
'phases': [
{'name': 'Germination', 'duration': 10, 'growth_factor': 0.1},
{'name': 'Seedling', 'duration': 15, 'growth_factor': 0.3},
{'name': 'Vegetative', 'duration': 25, 'growth_factor': 1.0},
{'name': 'Flowering', 'duration': 20, 'growth_factor': 0.6},
{'name': 'Fruiting', 'duration': 30, 'growth_factor': 0.4}
]
}
}
def predict_growth(self, parameters):
"""Predict plant growth based on environmental parameters"""
plant_type = parameters.get('plant_type', 'tomato')
ambient_mode = parameters.get('ambient_mode', 'controlled')
if plant_type not in self.plant_characteristics:
plant_type = 'tomato'
plant_info = self.plant_characteristics[plant_type]
# Calculate environmental stress factors
stress_factors = self._calculate_stress_factors(parameters, plant_info)
# Apply ambient mode effects
if ambient_mode == 'open':
# Add random variations for open environment
for factor in stress_factors:
stress_factors[factor] *= (0.8 + random.random() * 0.4)
elif ambient_mode == 'semi-controlled':
# Moderate variations
for factor in stress_factors:
stress_factors[factor] *= (0.9 + random.random() * 0.2)
# Calculate overall health score
health_score = np.mean(list(stress_factors.values())) * 100
# Generate growth stages
growth_stages = self._simulate_growth_stages(plant_info, stress_factors)
# Calculate final metrics
final_height = growth_stages[-1] if growth_stages else 0
growth_rate = final_height / len(growth_stages) if growth_stages else 0
# Calculate optimal conditions percentage
optimal_conditions = self._calculate_optimal_conditions(parameters, plant_info)
# Estimate yield
yield_estimate = self._estimate_yield(plant_type, health_score, final_height)
# Generate phase information
phases = self._generate_phase_info(plant_info)
return {
'growth_stages': growth_stages,
'final_height': final_height,
'growth_rate': growth_rate,
'health_score': health_score,
'optimal_conditions': optimal_conditions,
'yield': yield_estimate,
'phases': phases,
'stress_factors': stress_factors
}
def _calculate_stress_factors(self, params, plant_info):
"""Calculate stress factors for each environmental parameter"""
factors = {}
# Temperature stress
temp = params.get('temperature', 20)
opt_temp = plant_info['optimal_temp']
if opt_temp[0] <= temp <= opt_temp[1]:
factors['temperature'] = 1.0
else:
deviation = min(abs(temp - opt_temp[0]), abs(temp - opt_temp[1]))
factors['temperature'] = max(0.1, 1.0 - deviation / 20.0)
# Humidity stress
humidity = params.get('humidity', 60)
opt_humidity = plant_info['optimal_humidity']
if opt_humidity[0] <= humidity <= opt_humidity[1]:
factors['humidity'] = 1.0
else:
deviation = min(abs(humidity - opt_humidity[0]), abs(humidity - opt_humidity[1]))
factors['humidity'] = max(0.1, 1.0 - deviation / 40.0)
# pH stress
ph = params.get('soil_acidity', 6.5)
opt_ph = plant_info['optimal_ph']
if opt_ph[0] <= ph <= opt_ph[1]:
factors['ph'] = 1.0
else:
deviation = min(abs(ph - opt_ph[0]), abs(ph - opt_ph[1]))
factors['ph'] = max(0.1, 1.0 - deviation / 2.0)
# Water stress
water = params.get('water', 70) / 100.0
factors['water'] = min(1.0, max(0.1, water))
# Nutrient stress
nutrients = params.get('nutrients', 70) / 100.0
factors['nutrients'] = min(1.0, max(0.1, nutrients))
# Light stress
brightness = params.get('brightness', 30000)
optimal_light = 40000 # Optimal light in lux
light_factor = min(1.0, brightness / optimal_light)
factors['light'] = max(0.1, light_factor)
# CO2 stress
co2 = params.get('co2', 400)
optimal_co2 = 600 # Optimal CO2 in ppm
co2_factor = min(1.0, co2 / optimal_co2)
factors['co2'] = max(0.3, co2_factor)
return factors
def _simulate_growth_stages(self, plant_info, stress_factors):
"""Simulate daily growth stages"""
base_rate = plant_info['growth_rate_base']
max_height = plant_info['max_height']
phases = plant_info['phases']
overall_stress = np.mean(list(stress_factors.values()))
adjusted_rate = base_rate * overall_stress
growth_stages = []
current_height = 0
day = 0
for phase in phases:
phase_duration = phase['duration']
growth_factor = phase['growth_factor']
for _ in range(phase_duration):
daily_growth = adjusted_rate * growth_factor
# Add some randomness
daily_growth *= (0.8 + random.random() * 0.4)
current_height += daily_growth
current_height = min(current_height, max_height)
growth_stages.append(current_height)
day += 1
return growth_stages
def _calculate_optimal_conditions(self, params, plant_info):
"""Calculate percentage of optimal conditions met"""
optimal_count = 0
total_conditions = 3 # temp, humidity, pH
temp = params.get('temperature', 20)
if plant_info['optimal_temp'][0] <= temp <= plant_info['optimal_temp'][1]:
optimal_count += 1
humidity = params.get('humidity', 60)
if plant_info['optimal_humidity'][0] <= humidity <= plant_info['optimal_humidity'][1]:
optimal_count += 1
ph = params.get('soil_acidity', 6.5)
if plant_info['optimal_ph'][0] <= ph <= plant_info['optimal_ph'][1]:
optimal_count += 1
return (optimal_count / total_conditions) * 100
def _estimate_yield(self, plant_type, health_score, final_height):
"""Estimate plant yield based on health and growth"""
yield_factors = {
'tomato': {'base': 2.0, 'unit': 'kg'},
'basil': {'base': 0.3, 'unit': 'kg'},
'mint': {'base': 0.2, 'unit': 'kg'},
'lettuce': {'base': 0.5, 'unit': 'kg'},
'rosemary': {'base': 0.1, 'unit': 'kg'},
'strawberry': {'base': 0.8, 'unit': 'kg'}
}
if plant_type in yield_factors:
base_yield = yield_factors[plant_type]['base']
unit = yield_factors[plant_type]['unit']
# Adjust yield based on health and height
health_factor = health_score / 100.0
height_factor = min(1.0, final_height / 50.0) # Normalize height
estimated_yield = base_yield * health_factor * height_factor
return f"{estimated_yield:.2f} {unit}"
return "N/A"
def _generate_phase_info(self, plant_info):
"""Generate phase information with start/end days"""
phases = []
current_day = 0
for phase in plant_info['phases']:
phases.append({
'name': phase['name'],
'start': current_day,
'end': current_day + phase['duration'] - 1
})
current_day += phase['duration']
return phases
def save_model(self, filename):
"""Save the model to a file"""
try:
with open(filename, 'wb') as f:
pickle.dump(self.plant_characteristics, f)
return True
except Exception as e:
print(f"Error saving model: {e}")
return False
def load_model(self, filename):
"""Load the model from a file"""
try:
with open(filename, 'rb') as f:
self.plant_characteristics = pickle.load(f)
return True
except Exception as e:
print(f"Error loading model: {e}")
return False

BIN
PlantDashboard/public/.DS_Store vendored Normal file

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 277 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

View file

@ -0,0 +1,36 @@
# Core data science and visualization libraries
matplotlib>=3.5.0
pandas>=1.3.0
numpy>=1.21.0
# Image processing
Pillow>=8.3.0
# Machine learning and model persistence
joblib>=1.1.0
scikit-learn>=1.0.0
# Additional utilities
python-dateutil>=2.8.0
pytz>=2021.1
# Data export formats
openpyxl>=3.0.0
xlsxwriter>=3.0.0
# Configuration management
pyyaml>=5.4.0
# Logging enhancements
colorlog>=6.6.0
# Performance monitoring (optional)
psutil>=5.8.0
memory-profiler>=0.60.0
# Note: tkinter comes pre-installed with most Python distributions
# If tkinter is not available, install it using your system package manager:
# Ubuntu/Debian: sudo apt-get install python3-tk
# CentOS/RHEL: sudo yum install tkinter
# macOS: tkinter is included with Python from python.org
# Windows: tkinter is included with Python installer

110
README.md
View file

@ -1,2 +1,110 @@
# team-2
# WeGrow
> *Hackathon Project - [NOI Hackathon] [2025]*
## 🚀 Overview
Hi everyone! We are WeGrow,
## 🎯 Problem Statement
Describe the challenge or problem your team is addressing in this hackathon.
## 💡 Solution
Explain your approach and how your solution addresses the problem statement.
## ✨ Features
- [ ] Feature 1
- [ ] Feature 2
- [ ] Feature 3
- [ ] Feature 4
## 🛠️ Tech Stack
**Frontend:**
- Technology 1
- Technology 2
**Backend:**
- Technology 1
- Technology 2
**Other Tools:**
- Tool 1
- Tool 2
## 🏗️ Architecture
```text
[Add architecture diagram or description here]
```
## 🚀 Using the application
### Prerequisites
```bash
# List any prerequisites here
# e.g., Node.js 18+, Python 3.9+
```
### Installation
1. Clone the repository
```bash
git clone https://github.com/your-username/NOIProject.git
cd NOIProject
```
1. Install dependencies
```bash
# Add installation commands here
# e.g., npm install, pip install -r requirements.txt
```
1. Set up environment variables
```bash
# Copy example environment file
cp .env.example .env
# Edit .env with your configuration
```
1. Run the application
```bash
# Add run commands here
# e.g., npm start, python app.py
```
## 📸 Screenshots
Add screenshots of your application here
## 🎥 Demo
Add link to demo video or live deployment
## 🧑‍💻 Team
Meet our amazing team of 4:
| Name | Role | GitHub | LinkedIn |
|------|------|---------|----------|
| Member 1 | Role | [@username](https://github.com/username) | [LinkedIn](https://linkedin.com/in/username) |
| Member 2 | Role | [@username](https://github.com/username) | [LinkedIn](https://linkedin.com/in/username) |
| Member 3 | Role | [@username](https://github.com/username) | [LinkedIn](https://linkedin.com/in/username) |
| Member 4 | Role | [@username](https://github.com/username) | [LinkedIn](https://linkedin.com/in/username) |
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
---

41
path.txt Normal file
View file

@ -0,0 +1,41 @@
ROADMAP
-understand codebase
-add the possibility to retrieve all the data when the user click the submit button
-format the data in an usable format
-resolve numpy.float64 bug
-differences between the three modes:
Open mode:
-the temp, humidity, light, water parameters are setted by the meteo api, the rest is setted by the user
SemiControlled mode:
-the user choose how to set the parameters
Controlled mode:
-all the values are set by the user
-default modes are setted with general values in an optimal condition for your plant
-The forecast results will have as input the text description obtained by the model
(the output will be in the text folder inside data/texts folder, format "date1-date2-enum.txt")
-The growth evolution will have as input the photo/s obtained by the model
(the output will be in the text folder inside data/images folder, format "date1-date2-enum.jpg)
-make the plant information as a text field, remove all the connections with other functions
-set the value of light as Daily Light Integral (DLI)
-forecast for a period of time:
-create a calendar widget with start and end data
-based on how much does it take to create an image, for each subperiod of time create a new image to show
(it this will be coded add all a button to iterate over the folder)
-when the user click the load plant image, all previous record will be eliminated
-final updates of README.md, hackathon page, forgejo, github page, small design adjustments.
DURING DINNER
-update all on forgejo, hackathon page, forgejo