base code test for training a model with basil and tomatoes images to include in step 3 of previous code to improve answer
This commit is contained in:
parent
2b2509dcfd
commit
aad5144deb
953 changed files with 602 additions and 0 deletions
115
test2_with_training/scripts/train.py
Normal file
115
test2_with_training/scripts/train.py
Normal file
|
@ -0,0 +1,115 @@
|
|||
#!/usr/bin/env python3
|
||||
# scripts/train.py
|
||||
"""
|
||||
Script di training per il classificatore basilico vs pomodoro.
|
||||
Struttura:
|
||||
- carica dataset da data/basil_tomato/train e /val
|
||||
- transfer learning con EfficientNet-B0
|
||||
- salva il miglior modello in models/basil_tomato_classifier.pth
|
||||
"""
|
||||
import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torchvision import datasets, transforms, models
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
# 1) Percorsi dataset
|
||||
train_dir = "data/basil_tomato/train"
|
||||
val_dir = "data/basil_tomato/val"
|
||||
|
||||
# 2) Trasformazioni dati
|
||||
train_transforms = transforms.Compose([
|
||||
transforms.RandomResizedCrop(224),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
])
|
||||
val_transforms = transforms.Compose([
|
||||
transforms.Resize(256),
|
||||
transforms.CenterCrop(224),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
])
|
||||
|
||||
# 3) Crea dataset e DataLoader
|
||||
train_ds = datasets.ImageFolder(train_dir, transform=train_transforms)
|
||||
val_ds = datasets.ImageFolder(val_dir, transform=val_transforms)
|
||||
|
||||
train_loader = DataLoader(train_ds, batch_size=32, shuffle=True, num_workers=4)
|
||||
val_loader = DataLoader(val_ds, batch_size=32, shuffle=False, num_workers=4)
|
||||
|
||||
print(f"Classi trovate: {train_ds.classes}")
|
||||
print(f"Numero immagini train: {len(train_ds)}, validation: {len(val_ds)}")
|
||||
|
||||
# 4) Configura device
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# 5) Costruisci il modello
|
||||
model = models.efficientnet_b0(pretrained=True)
|
||||
num_classes = len(train_ds.classes)
|
||||
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
|
||||
model = model.to(device)
|
||||
|
||||
# 6) Definisci criterio e ottimizzatore
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-5)
|
||||
|
||||
# 7) Funzioni di training e validation
|
||||
|
||||
def train_epoch():
|
||||
model.train()
|
||||
running_loss, running_corrects = 0.0, 0
|
||||
|
||||
for inputs, labels in train_loader:
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
optimizer.zero_grad()
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item() * inputs.size(0)
|
||||
running_corrects += (outputs.argmax(1) == labels).sum().item()
|
||||
|
||||
epoch_loss = running_loss / len(train_ds)
|
||||
epoch_acc = running_corrects / len(train_ds)
|
||||
return epoch_loss, epoch_acc
|
||||
|
||||
|
||||
def validate_epoch():
|
||||
model.eval()
|
||||
val_loss, val_corrects = 0.0, 0
|
||||
|
||||
with torch.no_grad():
|
||||
for inputs, labels in val_loader:
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
val_loss += loss.item() * inputs.size(0)
|
||||
val_corrects += (outputs.argmax(1) == labels).sum().item()
|
||||
|
||||
loss = val_loss / len(val_ds)
|
||||
acc = val_corrects / len(val_ds)
|
||||
return loss, acc
|
||||
|
||||
# 8) Training loop principale
|
||||
best_val_acc = 0.0
|
||||
os.makedirs("models", exist_ok=True)
|
||||
|
||||
for epoch in range(1, 11): # 10 epoche
|
||||
train_loss, train_acc = train_epoch()
|
||||
val_loss, val_acc = validate_epoch()
|
||||
|
||||
print(f"Epoca {epoch}: train_loss={train_loss:.4f}, train_acc={train_acc:.4f} | "
|
||||
f"val_loss={val_loss:.4f}, val_acc={val_acc:.4f}")
|
||||
|
||||
# Salva il modello migliore
|
||||
if val_acc > best_val_acc:
|
||||
best_val_acc = val_acc
|
||||
save_path = os.path.join("models", "basil_tomato_classifier.pth")
|
||||
torch.save(model.state_dict(), save_path)
|
||||
print(f"--> Nuovo best model salvato con val_acc={val_acc:.4f}")
|
||||
|
||||
print("Training completato. Best val_acc: {:.4f}".format(best_val_acc))
|
Loading…
Add table
Add a link
Reference in a new issue