another test by passing not only a prompt but also the original image
This commit is contained in:
parent
c44dc6a59e
commit
aade742118
5 changed files with 359 additions and 0 deletions
BIN
test2/.cache.sqlite
Normal file
BIN
test2/.cache.sqlite
Normal file
Binary file not shown.
7
test2/README.md
Normal file
7
test2/README.md
Normal file
|
@ -0,0 +1,7 @@
|
|||
## this app requires:
|
||||
- python >= 3.11.0
|
||||
|
||||
### How to run:
|
||||
- cd inside the root of the project
|
||||
- install all necessary dependencies from the txt by doing : "pip install -r requirements.txt"
|
||||
- run by doing python script.py
|
BIN
test2/foto/basilico.jpg
Normal file
BIN
test2/foto/basilico.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.4 MiB |
12
test2/requirements.txt
Normal file
12
test2/requirements.txt
Normal file
|
@ -0,0 +1,12 @@
|
|||
openmeteo-requests
|
||||
pandas
|
||||
torch
|
||||
diffusers
|
||||
transformers
|
||||
pillow
|
||||
requests-cache
|
||||
retry-requests
|
||||
numpy
|
||||
accelerate
|
||||
hf_xet
|
||||
geocoder
|
340
test2/script.py
Normal file
340
test2/script.py
Normal file
|
@ -0,0 +1,340 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
Complete Plant Prediction Pipeline with Open-Meteo Official Client
|
||||
Open source weather + AI image transformation
|
||||
"""
|
||||
|
||||
import openmeteo_requests
|
||||
import pandas as pd
|
||||
import requests_cache
|
||||
from retry_requests import retry
|
||||
from datetime import datetime, timedelta
|
||||
from PIL import Image
|
||||
import torch
|
||||
from diffusers import StableDiffusionInstructPix2PixPipeline
|
||||
import numpy as np
|
||||
import geocoder
|
||||
|
||||
class PlantPredictor:
|
||||
def __init__(self):
|
||||
"""Initialize the plant prediction pipeline with Open-Meteo client"""
|
||||
# Setup the Open-Meteo API client with cache and retry on error
|
||||
cache_session = requests_cache.CachedSession('.cache', expire_after=3600)
|
||||
retry_session = retry(cache_session, retries=5, backoff_factor=0.2)
|
||||
self.openmeteo = openmeteo_requests.Client(session=retry_session)
|
||||
|
||||
def get_current_location(self):
|
||||
"""Get current location using IP geolocation"""
|
||||
try:
|
||||
g = geocoder.ip('me')
|
||||
if g.ok:
|
||||
print(f" Location detected: {g.city}, {g.country}")
|
||||
print(f" Coordinates: {g.latlng[0]:.4f}, {g.latlng[1]:.4f}")
|
||||
return g.latlng[0], g.latlng[1] # lat, lon
|
||||
else:
|
||||
print(" Could not detect location, using default (Milan)")
|
||||
self.image_model = None
|
||||
except Exception as e:
|
||||
print(f" Location detection failed: {e}, using default (Milan)")
|
||||
return 45.4642, 9.1900
|
||||
|
||||
def load_image_model(self):
|
||||
"""Load the image transformation model"""
|
||||
print("Loading Stable Diffusion model...")
|
||||
self.image_model = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
||||
"timbrooks/instruct-pix2pix",
|
||||
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
||||
)
|
||||
if torch.cuda.is_available():
|
||||
self.image_model = self.image_model.to("cuda")
|
||||
print("Model loaded successfully!")
|
||||
|
||||
def get_weather_forecast(self, lat, lon, days=7):
|
||||
"""Get weather forecast from Open-Meteo API using official client"""
|
||||
|
||||
start_date = datetime.now().strftime("%Y-%m-%d")
|
||||
end_date = (datetime.now() + timedelta(days=days)).strftime("%Y-%m-%d")
|
||||
|
||||
url = "https://api.open-meteo.com/v1/forecast"
|
||||
params = {
|
||||
"latitude": lat,
|
||||
"longitude": lon,
|
||||
"daily": [
|
||||
"temperature_2m_max",
|
||||
"temperature_2m_min",
|
||||
"precipitation_sum",
|
||||
"rain_sum",
|
||||
"uv_index_max",
|
||||
"sunshine_duration"
|
||||
],
|
||||
"start_date": start_date,
|
||||
"end_date": end_date,
|
||||
"timezone": "auto"
|
||||
}
|
||||
|
||||
try:
|
||||
responses = self.openmeteo.weather_api(url, params=params)
|
||||
response = responses[0] # Process first location
|
||||
|
||||
print(f"Coordinates: {response.Latitude()}°N {response.Longitude()}°E")
|
||||
print(f"Elevation: {response.Elevation()} m asl")
|
||||
print(f"Timezone: UTC{response.UtcOffsetSeconds()//3600:+d}")
|
||||
|
||||
# Process daily data
|
||||
daily = response.Daily()
|
||||
|
||||
# Extract data as numpy arrays (much faster!)
|
||||
daily_data = {
|
||||
"date": pd.date_range(
|
||||
start=pd.to_datetime(daily.Time(), unit="s", utc=True),
|
||||
end=pd.to_datetime(daily.TimeEnd(), unit="s", utc=True),
|
||||
freq=pd.Timedelta(seconds=daily.Interval()),
|
||||
inclusive="left"
|
||||
),
|
||||
"temperature_2m_max": daily.Variables(0).ValuesAsNumpy(),
|
||||
"temperature_2m_min": daily.Variables(1).ValuesAsNumpy(),
|
||||
"precipitation_sum": daily.Variables(2).ValuesAsNumpy(),
|
||||
"rain_sum": daily.Variables(3).ValuesAsNumpy(),
|
||||
"uv_index_max": daily.Variables(4).ValuesAsNumpy(),
|
||||
"sunshine_duration": daily.Variables(5).ValuesAsNumpy()
|
||||
}
|
||||
|
||||
# Create DataFrame for easy analysis
|
||||
daily_dataframe = pd.DataFrame(data=daily_data)
|
||||
|
||||
return daily_dataframe, response
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error fetching weather data: {e}")
|
||||
return None, None
|
||||
|
||||
def analyze_weather_for_plants(self, weather_df):
|
||||
"""Analyze weather data and create plant-specific metrics"""
|
||||
|
||||
if weather_df is None or weather_df.empty:
|
||||
return None
|
||||
|
||||
# Handle NaN values by filling with 0 or mean
|
||||
weather_df = weather_df.fillna(0)
|
||||
|
||||
# Calculate plant-relevant metrics using pandas (more efficient)
|
||||
plant_conditions = {
|
||||
"avg_temp_max": round(weather_df['temperature_2m_max'].mean(), 1),
|
||||
"avg_temp_min": round(weather_df['temperature_2m_min'].mean(), 1),
|
||||
"total_precipitation": round(weather_df['precipitation_sum'].sum(), 1),
|
||||
"total_rain": round(weather_df['rain_sum'].sum(), 1),
|
||||
"total_sunshine_hours": round(weather_df['sunshine_duration'].sum() / 3600, 1), # Convert to hours
|
||||
"max_uv_index": round(weather_df['uv_index_max'].max(), 1),
|
||||
"days_analyzed": len(weather_df),
|
||||
"temp_range": round(weather_df['temperature_2m_max'].max() - weather_df['temperature_2m_min'].min(), 1)
|
||||
}
|
||||
|
||||
return plant_conditions
|
||||
|
||||
def create_transformation_prompt(self, image_path, plant_conditions):
|
||||
"""Create a detailed prompt for image transformation based on weather AND image analysis"""
|
||||
|
||||
if not plant_conditions:
|
||||
return "Show this plant after one week of growth"
|
||||
|
||||
# STEP 3A: Analyze original image
|
||||
try:
|
||||
image = Image.open(image_path).convert("RGB")
|
||||
# Basic image analysis
|
||||
width, height = image.size
|
||||
aspect_ratio = width / height
|
||||
|
||||
# Simple plant type detection based on image characteristics
|
||||
plant_type = self.detect_plant_type(image)
|
||||
plant_health = self.assess_plant_health(image)
|
||||
|
||||
print(f"📸 Image Analysis:")
|
||||
print(f" Plant type detected: {plant_type}")
|
||||
print(f" Current health: {plant_health}")
|
||||
print(f" Image size: {width}x{height}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Warning: Could not analyze image: {e}")
|
||||
plant_type = "generic plant"
|
||||
plant_health = "healthy"
|
||||
|
||||
# STEP 3B: Weather analysis with plant-specific logic
|
||||
temp_avg = (plant_conditions['avg_temp_max'] + plant_conditions['avg_temp_min']) / 2
|
||||
|
||||
# Temperature effects (adjusted by plant type)
|
||||
if plant_type == "basil" or "herb" in plant_type:
|
||||
if temp_avg > 25:
|
||||
temp_effect = "warm weather promoting vigorous basil growth with larger, aromatic leaves and bushier structure"
|
||||
elif temp_avg < 15:
|
||||
temp_effect = "cool weather slowing basil growth with smaller, less vibrant leaves"
|
||||
else:
|
||||
temp_effect = "optimal temperature for basil supporting steady growth with healthy green foliage"
|
||||
else:
|
||||
if temp_avg > 25:
|
||||
temp_effect = "warm weather promoting vigorous growth with larger, darker green leaves"
|
||||
elif temp_avg < 10:
|
||||
temp_effect = "cool weather slowing growth with smaller, pale leaves"
|
||||
else:
|
||||
temp_effect = "moderate temperature supporting steady growth with healthy green foliage"
|
||||
|
||||
# Water effects
|
||||
if plant_conditions['total_rain'] > 20:
|
||||
water_effect = "abundant rainfall keeping leaves lush, turgid and deep green"
|
||||
elif plant_conditions['total_rain'] < 5:
|
||||
water_effect = "dry conditions causing slight leaf wilting and browning at edges"
|
||||
else:
|
||||
water_effect = "adequate moisture maintaining crisp, healthy leaf appearance"
|
||||
|
||||
# Sunlight effects
|
||||
if plant_conditions['total_sunshine_hours'] > 50:
|
||||
sun_effect = "plenty of sunlight encouraging dense, compact foliage growth"
|
||||
elif plant_conditions['total_sunshine_hours'] < 20:
|
||||
sun_effect = "limited sunlight causing elongated stems and sparse leaf growth"
|
||||
else:
|
||||
sun_effect = "moderate sunlight supporting balanced, proportional growth"
|
||||
|
||||
# UV effects
|
||||
if plant_conditions['max_uv_index'] > 7:
|
||||
uv_effect = "high UV causing slight leaf thickening and waxy appearance"
|
||||
else:
|
||||
uv_effect = "moderate UV maintaining normal leaf texture"
|
||||
|
||||
# STEP 3C: Create comprehensive prompt combining image + weather analysis
|
||||
prompt = f"""Transform this {plant_type} showing realistic growth after {plant_conditions['days_analyzed']} days. Current state: {plant_health}. Apply these weather effects: {temp_effect}, {water_effect}, {sun_effect}, and {uv_effect}. Show natural changes in leaf size, color saturation, stem thickness, and overall plant structure while maintaining the original composition and lighting. Weather summary: {plant_conditions['avg_temp_min']}-{plant_conditions['avg_temp_max']}°C, {plant_conditions['total_rain']}mm rain, {plant_conditions['total_sunshine_hours']}h sun"""
|
||||
|
||||
def detect_plant_type(self, image):
|
||||
"""Simple plant type detection based on image characteristics"""
|
||||
# This is a simplified version - in a real app you'd use a plant classification model
|
||||
# For now, we'll do basic analysis
|
||||
|
||||
# Convert to array for analysis
|
||||
img_array = np.array(image)
|
||||
|
||||
# Analyze color distribution
|
||||
green_pixels = np.sum((img_array[:,:,1] > img_array[:,:,0]) & (img_array[:,:,1] > img_array[:,:,2]))
|
||||
total_pixels = img_array.shape[0] * img_array.shape[1]
|
||||
green_ratio = green_pixels / total_pixels
|
||||
|
||||
# Simple heuristics (could be improved with ML)
|
||||
if green_ratio > 0.4:
|
||||
return "basil" # Assume basil for high green content
|
||||
else:
|
||||
return "generic plant"
|
||||
|
||||
def assess_plant_health(self, image):
|
||||
"""Assess basic plant health from image"""
|
||||
img_array = np.array(image)
|
||||
|
||||
# Analyze brightness and color vibrancy
|
||||
brightness = np.mean(img_array)
|
||||
green_channel = np.mean(img_array[:,:,1])
|
||||
|
||||
if brightness > 150 and green_channel > 120:
|
||||
return "healthy and vibrant"
|
||||
elif brightness > 100 and green_channel > 80:
|
||||
return "moderately healthy"
|
||||
else:
|
||||
return "showing some stress", plant_type, plant_health
|
||||
|
||||
def transform_plant_image(self, image_path, prompt):
|
||||
"""STEP 4: Generate new image based on analyzed prompt"""
|
||||
|
||||
if self.image_model is None:
|
||||
self.load_image_model()
|
||||
|
||||
try:
|
||||
# Load and prepare image
|
||||
image = Image.open(image_path).convert("RGB")
|
||||
|
||||
# Resize if too large (for memory efficiency)
|
||||
if max(image.size) > 1024:
|
||||
image.thumbnail((1024, 1024), Image.Resampling.LANCZOS)
|
||||
|
||||
print(f" STEP 4: Generating transformed image...")
|
||||
print(f" Using prompt: {prompt}")
|
||||
|
||||
# Transform image
|
||||
result = self.image_model(
|
||||
prompt,
|
||||
image=image,
|
||||
num_inference_steps=20,
|
||||
image_guidance_scale=1.5,
|
||||
guidance_scale=7.5
|
||||
).images[0]
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error transforming image: {e}")
|
||||
return None
|
||||
|
||||
def predict_plant_growth(self, image_path, lat=None, lon=None, output_path="predicted_plant.jpg", days=7):
|
||||
"""Complete pipeline: weather + image transformation"""
|
||||
|
||||
# Auto-detect location if not provided
|
||||
if lat is None or lon is None:
|
||||
print("Auto-detecting location...")
|
||||
lat, lon = self.get_current_location()
|
||||
|
||||
print(f"Starting plant prediction for coordinates: {lat:.4f}, {lon:.4f}")
|
||||
print(f"Analyzing {days} days of weather data...")
|
||||
|
||||
# Step 1: Get weather data using official Open-Meteo client
|
||||
print("Fetching weather data with caching and retry...")
|
||||
weather_df, response_info = self.get_weather_forecast(lat, lon, days)
|
||||
|
||||
if weather_df is None:
|
||||
print("Failed to get weather data")
|
||||
return None
|
||||
|
||||
print(f"Weather data retrieved for {len(weather_df)} days")
|
||||
print("\nWeather Overview:")
|
||||
print(weather_df[['date', 'temperature_2m_max', 'temperature_2m_min', 'precipitation_sum', 'sunshine_duration']].head())
|
||||
|
||||
# Step 2: Analyze weather for plants
|
||||
plant_conditions = self.analyze_weather_for_plants(weather_df)
|
||||
print(f"\nPlant-specific weather analysis: {plant_conditions}")
|
||||
|
||||
# Step 3: Analyze image + weather to create intelligent prompt
|
||||
print("\nSTEP 3: Analyzing image and creating transformation prompt...")
|
||||
prompt, plant_type, plant_health = self.create_transformation_prompt(image_path, plant_conditions)
|
||||
print(f"Plant identified as: {plant_type}")
|
||||
print(f"Current health: {plant_health}")
|
||||
print(f"Generated transformation prompt: {prompt}")
|
||||
|
||||
# Step 4: Generate transformed image
|
||||
print("\nSTEP 4: Generating prediction image...")
|
||||
result_image = self.transform_plant_image(image_path, prompt)
|
||||
|
||||
if result_image:
|
||||
result_image.save(output_path)
|
||||
print(f"Plant growth prediction saved to: {output_path}")
|
||||
return result_image, plant_conditions, weather_df, plant_type, plant_health
|
||||
else:
|
||||
print("Failed to transform image")
|
||||
return None
|
||||
|
||||
# Example usage
|
||||
if __name__ == "__main__":
|
||||
# Initialize predictor
|
||||
predictor = PlantPredictor()
|
||||
|
||||
# Predict plant growth
|
||||
result = predictor.predict_plant_growth(
|
||||
image_path="./foto/basilico.jpg",
|
||||
output_path="predicted_plant_growth.jpg",
|
||||
days=7
|
||||
)
|
||||
|
||||
if result:
|
||||
image, conditions, weather_data = result
|
||||
print("\n" + "="*50)
|
||||
print("PLANT PREDICTION COMPLETED SUCCESSFULLY!")
|
||||
print("="*50)
|
||||
print(f"Weather conditions analyzed: {conditions}")
|
||||
print(f"Weather data shape: {weather_data.shape}")
|
||||
print(f"Temperature range: {conditions['avg_temp_min']}°C to {conditions['avg_temp_max']}°C")
|
||||
print(f"Total precipitation: {conditions['total_rain']}mm")
|
||||
print(f"Sunshine hours: {conditions['total_sunshine_hours']}h")
|
||||
else:
|
||||
print("Plant prediction failed.")
|
Loading…
Add table
Add a link
Reference in a new issue