push
This commit is contained in:
parent
922ad3a78c
commit
e8cc39387f
7 changed files with 210 additions and 54 deletions
BIN
.cache.sqlite
BIN
.cache.sqlite
Binary file not shown.
|
@ -30,7 +30,7 @@ class MyApp extends StatelessWidget {
|
|||
// tested with just a hot reload.
|
||||
colorScheme: ColorScheme.fromSeed(seedColor: Colors.deepPurple),
|
||||
),
|
||||
home: const MyHomePage(title: 'S'),
|
||||
home: const MyHomePage(title: 'Now Playing'),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
|
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 481 KiB After Width: | Height: | Size: 436 KiB |
Binary file not shown.
Before Width: | Height: | Size: 264 KiB After Width: | Height: | Size: 256 KiB |
BIN
test2_with_training/scripts/models/basil_tomato_classifier.pth
Normal file
BIN
test2_with_training/scripts/models/basil_tomato_classifier.pth
Normal file
Binary file not shown.
|
@ -1,115 +1,271 @@
|
|||
#!/usr/bin/env python3
|
||||
# scripts/train.py
|
||||
"""
|
||||
Script di training per il classificatore basilico vs pomodoro.
|
||||
Struttura:
|
||||
- carica dataset da data/basil_tomato/train e /val
|
||||
- transfer learning con EfficientNet-B0
|
||||
- salva il miglior modello in models/basil_tomato_classifier.pth
|
||||
Funzionalità:
|
||||
- Carica dataset da data/basil_tomato/train e /val
|
||||
- Transfer learning con EfficientNet-B0
|
||||
- Salva il miglior modello in models/basil_tomato_classifier.pth
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torchvision import datasets, transforms, models
|
||||
from torchvision import datasets, transforms
|
||||
from torchvision.models import efficientnet_b0, EfficientNet_B0_Weights
|
||||
from torch.utils.data import DataLoader
|
||||
from pathlib import Path
|
||||
|
||||
# 1) Percorsi dataset
|
||||
train_dir = "data/basil_tomato/train"
|
||||
val_dir = "data/basil_tomato/val"
|
||||
# 1) Percorsi dataset (usa percorsi assoluti per sicurezza)
|
||||
script_dir = Path(__file__).parent
|
||||
base_dir = script_dir.parent if script_dir.parent.name != "scripts" else script_dir
|
||||
train_dir = base_dir / "scripts" / "data" / "basil_tomato" / "train"
|
||||
val_dir = base_dir / "scripts" / "data" / "basil_tomato" / "val"
|
||||
models_dir = base_dir / "scripts" / "models"
|
||||
|
||||
# 2) Trasformazioni dati
|
||||
print(f"🔍 Cercando dataset in:")
|
||||
print(f" Train: {train_dir}")
|
||||
print(f" Val: {val_dir}")
|
||||
print(f" Models: {models_dir}")
|
||||
|
||||
# Verifica esistenza directory
|
||||
if not train_dir.exists():
|
||||
print(f"❌ Directory train non trovata: {train_dir}")
|
||||
sys.exit(1)
|
||||
if not val_dir.exists():
|
||||
print(f"❌ Directory validation non trovata: {val_dir}")
|
||||
sys.exit(1)
|
||||
|
||||
# 2) Valori standard di normalizzazione ImageNet
|
||||
IMGNET_MEAN = [0.485, 0.456, 0.406]
|
||||
IMGNET_STD = [0.229, 0.224, 0.225]
|
||||
|
||||
# 3) Trasformazioni dati
|
||||
train_transforms = transforms.Compose([
|
||||
transforms.RandomResizedCrop(224),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
transforms.Normalize(IMGNET_MEAN, IMGNET_STD)
|
||||
])
|
||||
|
||||
val_transforms = transforms.Compose([
|
||||
transforms.Resize(256),
|
||||
transforms.CenterCrop(224),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
transforms.Normalize(IMGNET_MEAN, IMGNET_STD)
|
||||
])
|
||||
|
||||
# 3) Crea dataset e DataLoader
|
||||
train_ds = datasets.ImageFolder(train_dir, transform=train_transforms)
|
||||
val_ds = datasets.ImageFolder(val_dir, transform=val_transforms)
|
||||
# 4) Dataset e DataLoader con error handling
|
||||
try:
|
||||
train_ds = datasets.ImageFolder(str(train_dir), transform=train_transforms)
|
||||
val_ds = datasets.ImageFolder(str(val_dir), transform=val_transforms)
|
||||
|
||||
if len(train_ds) == 0:
|
||||
print(f"❌ Nessuna immagine trovata in {train_dir}")
|
||||
sys.exit(1)
|
||||
if len(val_ds) == 0:
|
||||
print(f"❌ Nessuna immagine trovata in {val_dir}")
|
||||
sys.exit(1)
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Errore nel caricamento dataset: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
train_loader = DataLoader(train_ds, batch_size=32, shuffle=True, num_workers=4)
|
||||
val_loader = DataLoader(val_ds, batch_size=32, shuffle=False, num_workers=4)
|
||||
|
||||
print(f"Classi trovate: {train_ds.classes}")
|
||||
print(f"Numero immagini train: {len(train_ds)}, validation: {len(val_ds)}")
|
||||
|
||||
# 4) Configura device
|
||||
# Ottimizza batch size per GPU disponibile
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
if torch.cuda.is_available():
|
||||
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
|
||||
batch_size = 32 if gpu_memory > 6 else 16
|
||||
num_workers = min(4, os.cpu_count() or 1)
|
||||
print(f"🚀 GPU: {torch.cuda.get_device_name(0)} ({gpu_memory:.1f} GB)")
|
||||
print(f"⚙️ Batch size ottimizzato: {batch_size}")
|
||||
else:
|
||||
batch_size = 8
|
||||
num_workers = min(2, os.cpu_count() or 1)
|
||||
print("💻 Usando CPU")
|
||||
|
||||
# 5) Costruisci il modello
|
||||
model = models.efficientnet_b0(pretrained=True)
|
||||
num_classes = len(train_ds.classes)
|
||||
model.classifier[1] = nn.Linear(model.classifier[1].in_features, num_classes)
|
||||
model = model.to(device)
|
||||
train_loader = DataLoader(
|
||||
train_ds, batch_size=batch_size, shuffle=True,
|
||||
num_workers=num_workers, pin_memory=torch.cuda.is_available()
|
||||
)
|
||||
val_loader = DataLoader(
|
||||
val_ds, batch_size=batch_size, shuffle=False,
|
||||
num_workers=num_workers, pin_memory=torch.cuda.is_available()
|
||||
)
|
||||
|
||||
# 6) Definisci criterio e ottimizzatore
|
||||
print(f"✅ Classi trovate: {train_ds.classes}")
|
||||
print(f"📊 Numero immagini - Train: {len(train_ds)}, Validation: {len(val_ds)}")
|
||||
|
||||
# Verifica bilanciamento classi
|
||||
class_counts_train = {}
|
||||
class_counts_val = {}
|
||||
for idx, (_, label) in enumerate(train_ds):
|
||||
class_name = train_ds.classes[label]
|
||||
class_counts_train[class_name] = class_counts_train.get(class_name, 0) + 1
|
||||
for idx, (_, label) in enumerate(val_ds):
|
||||
class_name = val_ds.classes[label]
|
||||
class_counts_val[class_name] = class_counts_val.get(class_name, 0) + 1
|
||||
|
||||
print(f"📈 Distribuzione train: {class_counts_train}")
|
||||
print(f"📈 Distribuzione val: {class_counts_val}")
|
||||
|
||||
# 5) Configura device (già fatto sopra)
|
||||
|
||||
# 6) Costruisci il modello con pesi pre-addestrati (fix deprecation warning)
|
||||
print("🔄 Caricando EfficientNet-B0 con pesi pre-addestrati...")
|
||||
try:
|
||||
model = efficientnet_b0(weights=EfficientNet_B0_Weights.IMAGENET1K_V1)
|
||||
num_classes = len(train_ds.classes)
|
||||
|
||||
# Sostituisci il classificatore finale
|
||||
model.classifier[1] = nn.Linear(
|
||||
model.classifier[1].in_features,
|
||||
num_classes
|
||||
)
|
||||
model = model.to(device)
|
||||
|
||||
# Ottimizzazioni per GPU
|
||||
if torch.cuda.is_available():
|
||||
model = model.half() # Usa mixed precision per risparmiare memoria
|
||||
print("✅ Mixed precision attivata")
|
||||
|
||||
print(f"✅ Modello caricato con {num_classes} classi: {train_ds.classes}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Errore nel caricamento del modello: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
# 7) Criterio e ottimizzatore
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-5)
|
||||
|
||||
# 7) Funzioni di training e validation
|
||||
optimizer = optim.Adam(
|
||||
model.parameters(), lr=1e-4, weight_decay=1e-5
|
||||
)
|
||||
|
||||
# 8) Funzione di training per un'epoca con progress tracking
|
||||
def train_epoch():
|
||||
model.train()
|
||||
running_loss, running_corrects = 0.0, 0
|
||||
total_batches = len(train_loader)
|
||||
|
||||
for inputs, labels in train_loader:
|
||||
for batch_idx, (inputs, labels) in enumerate(train_loader):
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
|
||||
# Mixed precision per GPU
|
||||
if torch.cuda.is_available():
|
||||
inputs = inputs.half()
|
||||
|
||||
optimizer.zero_grad()
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item() * inputs.size(0)
|
||||
running_loss += loss.item() * inputs.size(0)
|
||||
running_corrects += (outputs.argmax(1) == labels).sum().item()
|
||||
|
||||
# Progress tracking
|
||||
if (batch_idx + 1) % max(1, total_batches // 10) == 0:
|
||||
progress = (batch_idx + 1) / total_batches * 100
|
||||
print(f" 📈 Training progress: {progress:.1f}% ({batch_idx + 1}/{total_batches})")
|
||||
|
||||
epoch_loss = running_loss / len(train_ds)
|
||||
epoch_acc = running_corrects / len(train_ds)
|
||||
epoch_acc = running_corrects / len(train_ds)
|
||||
return epoch_loss, epoch_acc
|
||||
|
||||
|
||||
# 9) Funzione di validazione con progress tracking
|
||||
def validate_epoch():
|
||||
model.eval()
|
||||
val_loss, val_corrects = 0.0, 0
|
||||
total_batches = len(val_loader)
|
||||
|
||||
with torch.no_grad():
|
||||
for inputs, labels in val_loader:
|
||||
for batch_idx, (inputs, labels) in enumerate(val_loader):
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
|
||||
# Mixed precision per GPU
|
||||
if torch.cuda.is_available():
|
||||
inputs = inputs.half()
|
||||
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
val_loss += loss.item() * inputs.size(0)
|
||||
val_loss += loss.item() * inputs.size(0)
|
||||
val_corrects += (outputs.argmax(1) == labels).sum().item()
|
||||
|
||||
# Progress tracking
|
||||
if (batch_idx + 1) % max(1, total_batches // 5) == 0:
|
||||
progress = (batch_idx + 1) / total_batches * 100
|
||||
print(f" 📊 Validation progress: {progress:.1f}% ({batch_idx + 1}/{total_batches})")
|
||||
|
||||
loss = val_loss / len(val_ds)
|
||||
acc = val_corrects / len(val_ds)
|
||||
acc = val_corrects / len(val_ds)
|
||||
return loss, acc
|
||||
|
||||
# 8) Training loop principale
|
||||
best_val_acc = 0.0
|
||||
os.makedirs("models", exist_ok=True)
|
||||
# 10) Loop di training principale con miglioramenti
|
||||
if __name__ == "__main__":
|
||||
import time
|
||||
|
||||
best_val_acc = 0.0
|
||||
models_dir.mkdir(exist_ok=True)
|
||||
|
||||
print(f"\n🚀 Iniziando training per {10} epoche...")
|
||||
print(f"💾 I modelli saranno salvati in: {models_dir}")
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
for epoch in range(1, 11): # 10 epoche
|
||||
train_loss, train_acc = train_epoch()
|
||||
val_loss, val_acc = validate_epoch()
|
||||
for epoch in range(1, 11): # 10 epoche
|
||||
epoch_start = time.time()
|
||||
print(f"\n🔄 Epoca {epoch}/10:")
|
||||
|
||||
# Training
|
||||
print(" 🏋️ Training...")
|
||||
train_loss, train_acc = train_epoch()
|
||||
|
||||
# Validation
|
||||
print(" 🔍 Validation...")
|
||||
val_loss, val_acc = validate_epoch()
|
||||
|
||||
epoch_time = time.time() - epoch_start
|
||||
|
||||
print(f"Epoca {epoch}: train_loss={train_loss:.4f}, train_acc={train_acc:.4f} | "
|
||||
f"val_loss={val_loss:.4f}, val_acc={val_acc:.4f}")
|
||||
print(
|
||||
f"✅ Epoca {epoch}: train_loss={train_loss:.4f}, "
|
||||
f"train_acc={train_acc:.4f} | val_loss={val_loss:.4f}, "
|
||||
f"val_acc={val_acc:.4f} | tempo={epoch_time:.1f}s"
|
||||
)
|
||||
|
||||
# Salva il modello migliore
|
||||
if val_acc > best_val_acc:
|
||||
best_val_acc = val_acc
|
||||
save_path = os.path.join("models", "basil_tomato_classifier.pth")
|
||||
torch.save(model.state_dict(), save_path)
|
||||
print(f"--> Nuovo best model salvato con val_acc={val_acc:.4f}")
|
||||
# Salva il miglior modello con validazione
|
||||
if val_acc > best_val_acc:
|
||||
best_val_acc = val_acc
|
||||
save_path = models_dir / "basil_tomato_classifier.pth"
|
||||
|
||||
try:
|
||||
# Salva sia state_dict che modello completo
|
||||
torch.save({
|
||||
'epoch': epoch,
|
||||
'model_state_dict': model.state_dict(),
|
||||
'optimizer_state_dict': optimizer.state_dict(),
|
||||
'best_val_acc': best_val_acc,
|
||||
'train_acc': train_acc,
|
||||
'val_loss': val_loss,
|
||||
'classes': train_ds.classes,
|
||||
'num_classes': num_classes
|
||||
}, save_path)
|
||||
|
||||
print(f"💾 Nuovo best model salvato con val_acc={val_acc:.4f}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Errore nel salvataggio: {e}")
|
||||
|
||||
# Cleanup GPU memory
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
print("Training completato. Best val_acc: {:.4f}".format(best_val_acc))
|
||||
total_time = time.time() - start_time
|
||||
print(f"\n🎉 Training completato! Best val_acc: {best_val_acc:.4f}")
|
||||
print(f"⏱️ Tempo totale: {total_time:.1f}s ({total_time/60:.1f} minuti)")
|
||||
|
||||
# Statistiche finali
|
||||
if torch.cuda.is_available():
|
||||
print(f"📊 Memoria GPU utilizzata: {torch.cuda.max_memory_allocated()/1024**3:.2f} GB")
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue