team-3/src/c3nav/mapdata/utils/cache/indexed.py

184 lines
6.1 KiB
Python
Raw Normal View History

2017-11-20 02:07:27 +01:00
import math
import struct
import numpy as np
from django.conf import settings
2017-11-20 02:28:41 +01:00
from PIL import Image
2017-11-20 02:07:27 +01:00
from shapely import prepared
from shapely.geometry import box
from shapely.geometry.base import BaseGeometry
class GeometryIndexed:
# binary format (everything little-endian):
# 1 byte (uint8): variant id
# 1 byte (uint8): resolution
# 2 bytes (uint16): origin x
# 2 bytes (uint16): origin y
# 2 bytes (uint16): origin width
# 2 bytes (uint16): origin height
# (optional meta data, depending on subclass)
# x bytes data, line after line. (cell size depends on subclass)
dtype = np.uint16
variant_id = 0
def __init__(self, resolution=settings.CACHE_RESOLUTION, x=0, y=0, data=None, filename=None):
self.resolution = resolution
self.x = x
self.y = y
self.data = data if data is not None else self._get_empty_array()
self.filename = filename
@classmethod
def _get_empty_array(cls):
return np.empty((0, 0), dtype=cls.dtype)
@classmethod
def open(cls, filename):
with open(filename, 'rb') as f:
instance = cls.read(f)
instance.filename = filename
return instance
@classmethod
def read(cls, f):
variant_id, resolution, x, y, width, height = struct.unpack('<BBHHHH', f.read(10))
if variant_id != cls.variant_id:
raise ValueError('variant id does not match')
kwargs = {
'resolution': resolution,
'x': x,
'y': y,
}
cls._read_metadata(f, kwargs)
# noinspection PyTypeChecker
kwargs['data'] = np.fromstring(f.read(width*height*cls.dtype().itemsize), cls.dtype).reshape((height, width))
return cls(**kwargs)
@classmethod
def _read_metadata(cls, f, kwargs):
pass
def save(self, filename=None):
if filename is None:
filename = self.filename
if filename is None:
raise ValueError('Missing filename.')
with open(filename, 'wb') as f:
self.write(f)
def write(self, f):
f.write(struct.pack('<BBHHHH', self.variant_id, self.resolution, self.x, self.y, *reversed(self.data.shape)))
self._write_metadata(f)
f.write(self.data.tobytes('C'))
def _write_metadata(cls, f):
pass
def _get_geometry_bounds(self, geometry):
minx, miny, maxx, maxy = geometry.bounds
return (
int(math.floor(minx / self.resolution)),
int(math.floor(miny / self.resolution)),
int(math.ceil(maxx / self.resolution)),
int(math.ceil(maxy / self.resolution)),
)
def fit_bounds(self, minx, miny, maxx, maxy):
height, width = self.data.shape
if self.data.size:
minx = min(self.x, minx)
miny = min(self.y, miny)
maxx = max(self.x + width, maxx)
maxy = max(self.y + height, maxy)
new_data = np.zeros((maxy - miny, maxx - minx), dtype=self.dtype)
if self.data.size:
dx = self.x - minx
dy = self.y - miny
new_data[dy:(dy + height), dx:(dx + width)] = self.data
self.data = new_data
self.x = minx
self.y = miny
def get_geometry_cells(self, geometry, bounds=None):
if bounds is None:
bounds = self._get_geometry_bounds(geometry)
minx, miny, maxx, maxy = bounds
height, width = self.data.shape
minx = max(minx, self.x)
miny = max(miny, self.y)
maxx = min(maxx, self.x + width)
maxy = min(maxy, self.y + height)
cells = np.zeros_like(self.data, dtype=np.bool)
prep = prepared.prep(geometry)
res = self.resolution
for iy, y in enumerate(range(miny * res, maxy * res, res), start=miny - self.y):
for ix, x in enumerate(range(minx * res, maxx * res, res), start=minx - self.x):
if prep.intersects(box(x, y, x + res, y + res)):
cells[iy, ix] = True
return cells
@property
def bounds(self):
height, width = self.data.shape
return self.x, self.y, self.x+width, self.y+height
def __getitem__(self, key):
if isinstance(key, BaseGeometry):
bounds = self._get_geometry_bounds(key)
return self.data[self.get_geometry_cells(key, bounds)]
if isinstance(key, tuple):
xx, yy = key
minx = int(math.floor(xx.start / self.resolution))
miny = int(math.floor(yy.start / self.resolution))
maxx = int(math.ceil(xx.stop / self.resolution))
maxy = int(math.ceil(yy.stop / self.resolution))
height, width = self.data.shape
minx = min(self.x, minx) - self.x
miny = min(self.y, miny) - self.x
maxx = max(self.x + width, maxx) - self.y
maxy = max(self.y + height, maxy) - self.y
return self.data[miny:maxy, minx:maxx].flatten()
raise TypeError('GeometryIndexed index must be a shapely geometry or tuple, not %s' % type(key).__name__)
def __setitem__(self, key, value):
if isinstance(key, BaseGeometry):
bounds = self._get_geometry_bounds(key)
self.fit_bounds(*bounds)
cells = self.get_geometry_cells(key, bounds)
self.data[cells] = value
return
raise TypeError('GeometryIndexed index must be a shapely geometry, not %s' % type(key).__name__)
def to_image(self):
from c3nav.mapdata.models import Source
(minx, miny), (maxx, maxy) = Source.max_bounds()
height, width = self.data.shape
image_data = np.zeros((int(math.ceil((maxy-miny)/self.resolution)),
int(math.ceil((maxx-minx)/self.resolution))), dtype=np.uint8)
if self.data.size:
minval = min(self.data.min(), 0)
maxval = max(self.data.max(), minval+0.01)
visible_data = ((self.data.astype(float)-minval)*255/(maxval-minval)).clip(0, 255).astype(np.uint8)
image_data[self.y:self.y+height, self.x:self.x+width] = visible_data
return Image.fromarray(np.flip(image_data, axis=0), 'L')