refactor even more data→geometry and levelrender

This commit is contained in:
Laura Klünder 2017-11-20 02:38:35 +01:00
parent 1596e9a130
commit 94ae86d690
12 changed files with 14 additions and 12 deletions

View file

@ -0,0 +1,434 @@
import operator
from collections import Counter, deque
from functools import reduce
from itertools import chain
import numpy as np
from scipy.interpolate import NearestNDInterpolator
from shapely import prepared
from shapely.geometry import GeometryCollection
from shapely.ops import unary_union
from c3nav.mapdata.render.geometry.altitudearea import AltitudeAreaGeometries
from c3nav.mapdata.render.geometry.hybrid import HybridGeometry
from c3nav.mapdata.render.geometry.mesh import Mesh
from c3nav.mapdata.utils.geometry import get_rings
from c3nav.mapdata.utils.mesh import triangulate_rings
empty_geometry_collection = GeometryCollection()
class LevelGeometries:
def __init__(self):
self.altitudeareas = []
self.heightareas = []
self.walls = None
self.walls_extended = None
self.all_walls = None
self.short_walls = []
self.doors = None
self.doors_extended = None
self.holes = None
self.access_restriction_affected = None
self.restricted_spaces_indoors = None
self.restricted_spaces_outdoors = None
self.affected_area = None
self.ramps = []
self.vertices = None
self.faces = None
self.walls_base = None
self.walls_bottom = None
self.pk = None
self.on_top_of_id = None
self.short_label = None
self.base_altitude = None
self.default_height = None
self.door_height = None
self.min_altitude = None
@classmethod
def build_for_level(cls, level, altitudeareas_above):
geoms = LevelGeometries()
buildings_geom = unary_union([b.geometry for b in level.buildings.all()])
buildings_geom_prep = prepared.prep(buildings_geom)
# remove columns and holes from space areas
for space in level.spaces.all():
subtract = []
if space.outside:
subtract.append(buildings_geom)
columns = [c.geometry for c in space.columns.all()]
if columns:
subtract.extend(columns)
if subtract:
space.geometry = space.geometry.difference(unary_union(subtract))
holes = tuple(h.geometry for h in space.holes.all())
if holes:
space.holes_geom = unary_union([h.geometry for h in space.holes.all()])
space.walkable_geom = space.geometry.difference(space.holes_geom)
else:
space.holes_geom = empty_geometry_collection
space.walkable_geom = space.geometry
spaces_geom = unary_union([s.geometry for s in level.spaces.all()])
doors_geom = unary_union([d.geometry for d in level.doors.all()])
walkable_spaces_geom = unary_union([s.walkable_geom for s in level.spaces.all()])
geoms.doors = doors_geom.difference(walkable_spaces_geom)
walkable_geom = walkable_spaces_geom.union(geoms.doors)
if level.on_top_of_id is None:
geoms.holes = spaces_geom.difference(walkable_geom)
# keep track which areas are affected by access restrictions
access_restriction_affected = {}
# keep track wich spaces to hide
restricted_spaces_indoors = {}
restricted_spaces_outdoors = {}
# go through spaces and their areas for access control, ground colors, height areas and obstacles
colors = {}
obstacles = {}
heightareas = {}
for space in level.spaces.all():
access_restriction = space.access_restriction_id
if access_restriction is not None:
access_restriction_affected.setdefault(access_restriction, []).append(space.geometry)
buffered = space.geometry.buffer(0.01).union(unary_union(
tuple(door.geometry for door in level.doors.all() if door.geometry.intersects(space.geometry))
).difference(walkable_spaces_geom))
intersects = buildings_geom_prep.intersects(buffered)
if intersects:
restricted_spaces_indoors.setdefault(access_restriction, []).append(
buffered.intersection(buildings_geom)
)
if not intersects or not buildings_geom_prep.contains(buffered):
restricted_spaces_outdoors.setdefault(access_restriction, []).append(
buffered.difference(buildings_geom)
)
colors.setdefault(space.get_color(), {}).setdefault(access_restriction, []).append(space.geometry)
for area in space.areas.all():
access_restriction = area.access_restriction_id or space.access_restriction_id
if access_restriction is not None:
access_restriction_affected.setdefault(access_restriction, []).append(area.geometry)
colors.setdefault(area.get_color(), {}).setdefault(access_restriction, []).append(area.geometry)
for obstacle in space.obstacles.all():
obstacles.setdefault(int(obstacle.height*1000), []).append(
obstacle.geometry.intersection(space.walkable_geom)
)
for lineobstacle in space.lineobstacles.all():
obstacles.setdefault(int(lineobstacle.height*1000), []).append(
lineobstacle.buffered_geometry.intersection(space.walkable_geom)
)
geoms.ramps.extend(ramp.geometry for ramp in space.ramps.all())
heightareas.setdefault(int((space.height or level.default_height)*1000), []).append(space.geometry)
colors.pop(None, None)
# merge ground colors
for color, color_group in colors.items():
for access_restriction, areas in tuple(color_group.items()):
color_group[access_restriction] = unary_union(areas)
# merge obstacles
obstacles = {key: unary_union(polygons) for key, polygons in obstacles.items()}
# add altitudegroup geometries and split ground colors into them
for altitudearea in level.altitudeareas.all():
altitudearea_prep = prepared.prep(altitudearea.geometry)
altitudearea_colors = {color: {access_restriction: area.intersection(altitudearea.geometry)
for access_restriction, area in areas.items()
if altitudearea_prep.intersects(area)}
for color, areas in colors.items()}
altitudearea_colors = {color: areas for color, areas in altitudearea_colors.items() if areas}
altitudearea_obstacles = {height: area.intersection(altitudearea.geometry)
for height, area in obstacles.items()
if altitudearea_prep.intersects(area)}
geoms.altitudeareas.append(AltitudeAreaGeometries(altitudearea,
altitudearea_colors,
altitudearea_obstacles))
# merge height areas
geoms.heightareas = tuple((unary_union(geoms), height)
for height, geoms in sorted(heightareas.items(), key=operator.itemgetter(0)))
# merge access restrictions
geoms.access_restriction_affected = {access_restriction: unary_union(areas)
for access_restriction, areas in access_restriction_affected.items()}
geoms.restricted_spaces_indoors = {access_restriction: unary_union(spaces)
for access_restriction, spaces in restricted_spaces_indoors.items()}
geoms.restricted_spaces_outdoors = {access_restriction: unary_union(spaces)
for access_restriction, spaces in restricted_spaces_outdoors.items()}
geoms.walls = buildings_geom.difference(unary_union((spaces_geom, doors_geom)))
# shorten walls if there are altitudeareas above
remaining = geoms.walls
for altitudearea in altitudeareas_above:
intersection = altitudearea.geometry.intersection(remaining).buffer(0)
if intersection.is_empty:
continue
remaining = remaining.difference(altitudearea.geometry)
geoms.short_walls.append((altitudearea, intersection))
geoms.all_walls = geoms.walls
geoms.walls = geoms.walls.difference(
unary_union(tuple(altitudearea.geometry for altitudearea in altitudeareas_above))
)
# general level infos
geoms.pk = level.pk
geoms.on_top_of_id = level.on_top_of_id
geoms.short_label = level.short_label
geoms.base_altititude = int(level.base_altitude * 1000)
geoms.default_height = int(level.default_height * 1000)
geoms.door_height = int(level.door_height * 1000)
geoms.min_altitude = (min(area.altitude for area in geoms.altitudeareas)
if geoms.altitudeareas else geoms.base_altitude)
return geoms
def get_geometries(self):
# omit heightareas as these are never drawn
return chain((area.geometry for area in self.altitudeareas), (self.walls, self.doors,),
self.restricted_spaces_indoors.values(), self.restricted_spaces_outdoors.values(), self.ramps,
(geom for altitude, geom in self.short_walls))
def create_hybrid_geometries(self, face_centers):
vertices_offset = self.vertices.shape[0]
faces_offset = self.faces.shape[0]
new_vertices = deque()
new_faces = deque()
for area in self.altitudeareas:
area_vertices, area_faces = area.create_hybrid_geometries(face_centers, vertices_offset, faces_offset)
vertices_offset += area_vertices.shape[0]
faces_offset += area_faces.shape[0]
new_vertices.append(area_vertices)
new_faces.append(area_faces)
if new_vertices:
self.vertices = np.vstack((self.vertices, *new_vertices))
self.faces = np.vstack((self.faces, *new_faces))
self.heightareas = tuple((HybridGeometry.create(area, face_centers), height)
for area, height in self.heightareas)
self.walls = HybridGeometry.create(self.walls, face_centers)
self.short_walls = tuple((altitudearea, HybridGeometry.create(geom, face_centers))
for altitudearea, geom in self.short_walls)
self.all_walls = HybridGeometry.create(self.all_walls, face_centers)
self.doors = HybridGeometry.create(self.doors, face_centers)
self.restricted_spaces_indoors = {key: HybridGeometry.create(geom, face_centers)
for key, geom in self.restricted_spaces_indoors.items()}
self.restricted_spaces_outdoors = {key: HybridGeometry.create(geom, face_centers)
for key, geom in self.restricted_spaces_outdoors.items()}
def _get_altitudearea_vertex_values(self, area, i_vertices):
return area.get_altitudes(self.vertices[i_vertices])
def _get_short_wall_vertex_values(self, item, i_vertices):
return item[0].get_altitudes(self.vertices[i_vertices]) - int(0.7 * 1000)
def _build_vertex_values(self, items, area_func, value_func):
vertex_values = np.empty(self.vertices.shape[:1], dtype=np.int32)
vertex_value_mask = np.full(self.vertices.shape[:1], fill_value=False, dtype=np.bool)
for item in items:
i_vertices = np.unique(self.faces[np.array(tuple(chain(*area_func(item).faces)))].flatten())
vertex_values[i_vertices] = value_func(item, i_vertices)
vertex_value_mask[i_vertices] = True
if not np.all(vertex_value_mask):
interpolate = NearestNDInterpolator(self.vertices[vertex_value_mask],
vertex_values[vertex_value_mask])
vertex_values[np.logical_not(vertex_value_mask)] = interpolate(
*np.transpose(self.vertices[np.logical_not(vertex_value_mask)])
)
return vertex_values
def _filter_faces(self, faces):
return faces[np.all(np.any(faces[:, (0, 1, 2), :]-faces[:, (2, 0, 1), :], axis=2), axis=1)]
def _create_polyhedron(self, faces, lower, upper, top=True, sides=True, bottom=True):
if not any(faces):
return ()
# collect rings/boundaries
boundaries = deque()
for subfaces in faces:
if not subfaces:
continue
subfaces = self.faces[np.array(tuple(subfaces))]
segments = subfaces[:, (0, 1, 1, 2, 2, 0)].reshape((-1, 2))
edges = set(edge for edge, num in Counter(tuple(a) for a in np.sort(segments, axis=1)).items() if num == 1)
new_edges = {}
for a, b in segments:
if (a, b) in edges or (b, a) in edges:
new_edges.setdefault(a, deque()).append(b)
edges = new_edges
double_points = set(a for a, bs in edges.items() if len(bs) > 1)
while edges:
new_ring = deque()
if double_points:
start = double_points.pop()
else:
start = next(iter(edges.keys()))
last = edges[start].pop()
if not edges[start]:
edges.pop(start)
new_ring.append(start)
while start != last:
new_ring.append(last)
double_points.discard(last)
new_last = edges[last].pop()
if not edges[last]:
edges.pop(last)
last = new_last
new_ring = np.array(new_ring, dtype=np.uint32)
boundaries.append(tuple(zip(chain((new_ring[-1], ), new_ring), new_ring)))
boundaries = np.vstack(boundaries)
geom_faces = self.faces[np.array(tuple(chain(*faces)))]
if not isinstance(upper, np.ndarray):
upper = np.full(self.vertices.shape[0], fill_value=upper, dtype=np.int32)
else:
upper = upper.flatten()
if not isinstance(lower, np.ndarray):
lower = np.full(self.vertices.shape[0], fill_value=lower, dtype=np.int32)
else:
lower = lower.flatten()
# lower should always be lower or equal than upper
lower = np.minimum(upper, lower)
# remove faces that have identical upper and lower coordinates
geom_faces = geom_faces[(upper[geom_faces]-lower[geom_faces]).any(axis=1)]
# top faces
if top:
top = self._filter_faces(np.dstack((self.vertices[geom_faces], upper[geom_faces])))
else:
top = Mesh.empty_faces
# side faces
if sides:
sides = self._filter_faces(np.vstack((
# upper
np.dstack((self.vertices[boundaries[:, (1, 0, 0)]],
np.hstack((upper[boundaries[:, (1, 0)]], lower[boundaries[:, (0,)]])))),
# lower
np.dstack((self.vertices[boundaries[:, (0, 1, 1)]],
np.hstack((lower[boundaries[:, (0, 1)]], upper[boundaries[:, (1,)]]))))
)))
else:
sides = Mesh.empty_faces
# bottom faces
if bottom:
bottom = self._filter_faces(
np.flip(np.dstack((self.vertices[geom_faces], lower[geom_faces])), axis=1)
)
else:
bottom = Mesh.empty_faces
return tuple((Mesh(top, sides, bottom),))
def build_mesh(self, interpolator=None):
rings = tuple(chain(*(get_rings(geom) for geom in self.get_geometries())))
self.vertices, self.faces = triangulate_rings(rings)
self.create_hybrid_geometries(face_centers=self.vertices[self.faces].sum(axis=1) / 3000)
# calculate altitudes
vertex_altitudes = self._build_vertex_values(reversed(self.altitudeareas),
area_func=operator.attrgetter('geometry'),
value_func=self._get_altitudearea_vertex_values)
vertex_heights = self._build_vertex_values(self.heightareas,
area_func=operator.itemgetter(0),
value_func=lambda a, i: a[1])
vertex_wall_heights = vertex_altitudes + vertex_heights
# remove altitude area faces inside walls
for area in self.altitudeareas:
area.remove_faces(reduce(operator.or_, self.walls.faces, set()))
# create polyhedrons
self.walls_base = HybridGeometry(self.all_walls.geom, self.all_walls.faces)
self.walls_bottom = HybridGeometry(self.all_walls.geom, self.all_walls.faces)
self.walls_extended = HybridGeometry(self.walls.geom, self.walls.faces)
self.walls.build_polyhedron(self._create_polyhedron,
lower=vertex_altitudes - int(0.7 * 1000),
upper=vertex_wall_heights)
for altitudearea, geom in self.short_walls:
geom.build_polyhedron(self._create_polyhedron,
lower=vertex_altitudes - int(0.7 * 1000),
upper=self._build_vertex_values([(altitudearea, geom)],
area_func=operator.itemgetter(1),
value_func=self._get_short_wall_vertex_values))
self.short_walls = tuple(geom for altitude, geom in self.short_walls)
for key, geometry in self.restricted_spaces_indoors.items():
geometry.crop_ids = frozenset(('in:%s' % key, ))
for key, geometry in self.restricted_spaces_outdoors.items():
geometry.crop_ids = frozenset(('out:%s' % key, ))
crops = tuple((crop, prepared.prep(crop.geom)) for crop in chain(self.restricted_spaces_indoors.values(),
self.restricted_spaces_outdoors.values()))
self.doors_extended = HybridGeometry(self.doors.geom, self.doors.faces)
self.doors.build_polyhedron(self._create_polyhedron,
crops=crops,
lower=vertex_altitudes + self.door_height,
upper=vertex_wall_heights - 1)
if interpolator is not None:
upper = interpolator(*np.transpose(self.vertices)).astype(np.int32) - int(0.7 * 1000)
self.walls_extended.build_polyhedron(self._create_polyhedron,
lower=vertex_wall_heights,
upper=upper,
bottom=False)
self.doors_extended.build_polyhedron(self._create_polyhedron,
lower=vertex_wall_heights - 1,
upper=upper,
bottom=False)
else:
self.walls_extended = None
self.doors_extended = None
for area in self.altitudeareas:
area.create_polyhedrons(self._create_polyhedron,
self._build_vertex_values([area],
area_func=operator.attrgetter('geometry'),
value_func=self._get_altitudearea_vertex_values),
min_altitude=self.min_altitude,
crops=crops)
for key, geometry in self.restricted_spaces_indoors.items():
geometry.build_polyhedron(self._create_polyhedron,
lower=vertex_altitudes,
upper=vertex_wall_heights,
bottom=False)
for key, geometry in self.restricted_spaces_outdoors.items():
geometry.faces = None
self.walls_base.build_polyhedron(self._create_polyhedron,
lower=self.min_altitude - int(0.7 * 1000),
upper=vertex_altitudes - int(0.7 * 1000),
top=False, bottom=False)
self.walls_bottom.build_polyhedron(self._create_polyhedron, lower=0, upper=1, top=False)
# unset heightareas, they are no loinger needed
self.all_walls = None
self.ramps = None
self.heightareas = None
self.vertices = None
self.faces = None