rangelocator: fractional ranges?

This commit is contained in:
Laura Klünder 2023-11-11 16:49:12 +01:00
parent 94af40d2f1
commit db07c57c35

View file

@ -11,7 +11,6 @@ from scipy.optimize import least_squares
from c3nav.mapdata.models import MapUpdate
from c3nav.mapdata.models.geometry.space import RangingBeacon
from c3nav.mapdata.utils.locations import CustomLocation
from c3nav.mesh.messages import MeshMessageType
from c3nav.routing.router import Router
@ -72,9 +71,6 @@ class RangeLocator:
) if i is not None
)
# get index of all known beacons
beacons_i = tuple(i for i, peer in ranges)
# create 2d array with x, y, z, distance as rows
np_ranges = np.hstack((
self.beacon_positions[tuple(i for i, distance in ranges), :],
@ -90,17 +86,22 @@ class RangeLocator:
# TODO: three points aren't really enough for precise results? hm. maybe just a 2d fix then?
pass
factor = None
dimensions = 2
measured_ranges = np_ranges[:, 3]
measured_ranges = measured_ranges / np.max(measured_ranges)
# rating the guess by calculating the distances
def rate_guess(guess):
diffs = scipy.linalg.norm(np_ranges[:, :3] - guess[:3], axis=1) * (factor or guess[3]) - np_ranges[:, 3]
#if (diffs < -200).any():
# return diffs+10000-np.clip(diffs, None, -200)*10
guessed_ranges = scipy.linalg.norm(np_ranges[:, :dimensions] - guess[:dimensions], axis=1)
guessed_ranges /= np.max(guessed_ranges)
diffs = guessed_ranges-measured_ranges
if (diffs < -200).any():
return diffs+100-np.clip(diffs, None, -200)*10
return diffs
# initial guess i the average of all beacons, with scale 1
initial_guess = np.append(np.average(np_ranges[:, :3], axis=0), 1)
initial_guess = np.average(np_ranges[:, :dimensions], axis=0)
# here the magic happens
results = least_squares(rate_guess, initial_guess)
@ -117,8 +118,11 @@ class RangeLocator:
)
print("measured ranges:", ", ".join(("%.2f" % i) for i in tuple(np_ranges[:, 3])))
print("result ranges:", ", ".join(("%.2f" % i) for i in tuple(scipy.linalg.norm(np_ranges[:, :3] - results.x[:3], axis=1)*(factor or results.x[3]))))
print("result ranges:", ", ".join(
("%.2f" % i) for i in tuple(scipy.linalg.norm(np_ranges[:, :dimensions] - results.x[:dimensions], axis=1))
))
if dimensions > 2:
print("height:", results.x[2])
print("scale:", (factor or results.x[3]))
# print("scale:", (factor or results.x[3]))
return location